

Artificial Intelligence for next generation CYBERsecurity

Deliverable title Deliverable ID:

AI-driven self-testing and automatic

error correction for robustness –

Initial version

D3.1

Preparation date:

31/01/2024

Editor/Lead beneficiary (name/partner):

Ákos Milánkovich / SLAB

Internally reviewed by (name/partner):

Ana Rosa Cavalli /MI

Marek Pawlicki / ITTI

Abstract:

This deliverable outlines the initial version of two pivotal components of the AI4CYBER project: AI-

driven self-testing and automatic error correction (AI4FIX) and AI-enhanced Vulnerability

Identification (AI4VULN). It provides a detailed depiction of these innovative AI-powered tools,

focusing on their architectural design, specifications, and the proof-of-concept tests. AI4FIX leverages

advanced AI technologies like large language models to automate the correction of robustness-related

weaknesses in software code, while AI4VULN employs AI-boosted symbolic execution to efficiently

identify vulnerabilities in source code. The document also describes the process of creating and

analysing a comprehensive dataset repository from open-source software development records, which

is crucial for tracking software evolution and identifying vulnerabilities. The implementation of these

models, currently a work in progress, includes initial testing with collected datasets using third-party

online models.

Dissemination level

PU Public, fully open X

SEN Sensitive, limited under the conditions of the Grant Agreement

EU-R Classified R-UE/EU-R – EU RESTRICTED under the Commission Decision No

2015/444

D3.1: AI-driven self-testing and automatic error correction for robustness – Initial version 2

AI4CYBER consortium

1

Fundación Tecnalia Research & Innovation

(TECNALIA, Spain)

2

University of Western Macedonia

(UOWM, Greece)

3

Montimage EURL

(MI, France)

4

Thales Six GTS France SAS

(TSG, France)

5

Search Lab

(SLAB, Hungary)

6

Frontendart Szoftver KFT

(FEA, Hungary)

7

European Organisation for Security

(EOS, Belgium)

8

PDM E FC Projecto Desenvolvimento

Manutencao Formacao e Consultadorialda

(PDMFC, Portugal)

9

ITTI Sp. z o.o.

(ITTI, Poland)

10

Public Power Corporation S. A.

(PPC, Greece)

11

Hospital Do Espirito Santo de Evora EPE

(HES, Portugal)

12

Caixabank S.A.

(CXB, Spain)

13

Metamind Innovations P.C

(MINDS, Greece)

D3.1: AI-driven self-testing and automatic error correction for robustness – Initial version 3

Table of contents

AI4CYBER consortium .. 2

List of figures .. 5

List of tables .. 6

Executive Summary .. 7

1 Introduction .. 8

1.1 Objective of the document .. 8

1.2 Structure of the document ... 8
1.3 Relationships with other deliverables ... 8
1.4 Contributors ... 8
1.5 Acronyms and abbreviations ... 8
1.6 Revision history ... 9

1.7 Change log ... 10

2 AI4FIX Architectural Design & Implementation – Initial Version 11

2.1 AI4FIX – State of the Art Analysis ... 11
2.1.1 Robustness improvements ... 11

2.1.2 Software evolution .. 13
2.1.3 AI-based program repair ... 22
2.1.4 AI-generated automated testing .. 24

2.2 AI4FIX System Requirements Analysis ... 27

2.3 AI4FIX Specification .. 28
2.3.1 System context .. 28

2.3.2 Container model .. 29
2.3.3 Component model ... 30
2.3.4 Hardware requirements ... 34

2.3.5 Software evolution .. 34

2.3.6 Code synthesis using AI and LLM .. 35

2.4 AI4FIX Communication Interfaces ... 43
2.5 AI4FIX Installation and User Guide ... 44

2.5.1 Installing dependencies ... 44
2.5.2 Packaging, publishing ... 44
2.5.3 Generate .vsix file: .. 45

2.5.4 Example of usage on a demo project .. 45
2.5.5 Example project ... 46

2.5.6 Open-source repository ... 46
2.6 AI4FIX Unit Testing ... 46

3 AI4VULN Architectural Design & Implementation – Initial Version 50

3.1 AI4VULN – Symbolic execution-based vulnerability detection 50
3.1.1 State of the Art Analysis ... 50

3.1.2 Background ... 51
3.1.3 Introduction ... 57
3.1.4 Handling finally blocks ... 62

3.1.5 Constraint solver integration ... 63
3.1.6 Low-level integration challenges .. 67
3.1.7 Integration result ... 68

3.2 AI-based vulnerability detection ... 70
3.3 AI4VULN System Requirements Analysis... 71

3.4 AI4VULN Specification ... 71
3.4.1 System context .. 72

D3.1: AI-driven self-testing and automatic error correction for robustness – Initial version 4

3.4.2 Container model .. 72
3.4.3 Component model ... 73

3.4.4 Prospector Dataset ... 74
3.4.5 JiraMiner dataset ... 75
3.4.6 Identifying security relevance ... 78
3.4.7 LLM-based Vulnerability detection (proof of concept) 84

3.5 AI4VULN Communication Interfaces .. 88
3.6 AI4VULN Installation and User Guide .. 90
3.7 AI4VULN Unit Testing .. 90

3.7.1 Validation on open-source projects ... 91
4 Conclusions .. 93

References ... 94

D3.1: AI-driven self-testing and automatic error correction for robustness – Initial version 5

List of figures

Figure 1: System context of AI4FIX .. 29
Figure 2: Container model of AI4FIX .. 30
Figure 3: Component model of Software evolution ... 31
Figure 4: Component model of Model evolution ... 32
Figure 5: Component model of Fix and Test generation ... 33

Figure 6: isTriangleValid function ... 52
Figure 7: Symbolic execution tree ... 53
Figure 8: Control Flow Graph (CFG) of the isTriangleValid function 56
Figure 9: Symbolic execution tree ... 57
Figure 10: SMT-LIBv2 language ... 60

Figure 11: Try-catch with multiple resources .. 61
Figure 12: Original CFG .. 61
Figure 13: Improved CFG with resource handling .. 62

Figure 14: Try-catch-finally construct ... 62
Figure 15: Original CFG for handling finally blocks ... 63
Figure 16: Improved handling of finally blocks ... 63
Figure 17: Participants of an SMT solver competition .. 65

Figure 18: Faulty test case .. 70
Figure 19: System context of AI4VULN ... 72
Figure 20: Container model of AI4VULN ... 73
Figure 21: Component model of AI4VULN .. 74

Figure 22: Security-relevance classification .. 84
Figure 23: Scorecard for command injection results ... 87

Figure 24: Scorecard for weak randomness results .. 88
Figure 25: Lines of Code histogram of the examined Java projects .. 92

D3.1: AI-driven self-testing and automatic error correction for robustness – Initial version 6

List of tables

Table 1: Goals of software evolution approaches .. 13
Table 2: Datasets for software evolution .. 16
Table 3: Metrics for software evolution ... 17
Table 4: Models for software evolution ... 20
Table 5: Comparison of LLMs ... 23

Table 6: Benchmarks .. 23
Table 7: System requirements coverage by initial version of AI4FIX component 27
Table 8: Hardware requirements for the tools .. 34
Table 9: Functional validity comparison .. 36
Table 10: Result of developers’ evaluation .. 37

Table 11: Test generation results ... 43
Table 12: System test case AI4FIX_001 .. 46
Table 13: System test case AI4FIX_002 .. 47

Table 14: System test case AI4FIX_003 .. 47
Table 15: System test case AI4FIX_004 .. 48
Table 16: Integration test case AI4FIX_005 .. 48
Table 17: Results of the measurements .. 66

Table 18: Improvements in the regression tests ... 69
Table 19: System requirements coverage by initial version of AI4VULN component 71
Table 20: Keyword classes in JIRA ... 78
Table 21: Number of issues, which have at least one associated java file 79

Table 22: Metrics results .. 83
Table 23: Command injection test results .. 86

Table 24: Testing one-shot and self-reflection techniques ... 88
Table 25: System test case AI4VULN_001 ... 90
Table 26: System test case AI4VULN_002 ... 91

Table 27: The Lines of Code and Number of Classes metrics of the examined Java projects 92

D3.1: AI-driven self-testing and automatic error correction for robustness – Initial version 7

Executive Summary

This document is deliverable D3.1 AI-driven self-testing and automatic error correction for

robustness – Initial version of AI4CYBER project.

The deliverable presents the outcomes of tasks T3.1 and T3.2 of WP3 “AI-driven Preparedness

for Robustness”, captured in the form of two key exploitable result prototypes, AI4FIX and

AI4VULN, respectively.

Task 3.1 studies the “AI-driven self-testing and automatic error correction” and led by SLAB

focuses on utilizing advanced AI technologies, such as large language models, to automate the

correction of robustness-related weaknesses in software code. This task involves creating a

repository of datasets from various open-source software development records, spanning

decades. It aims to analyze these datasets to track software evolution, identify and correct

vulnerabilities - a step beyond the capabilities of current code analysis tools. The key objective

is to enable automatic code corrections without relying solely on human intervention.

Additionally, Task 3.1 will develop AI-based methods to generate unit tests and automatically

validate the modified system, ensuring thorough re-testing post-correction. These developments

are integral to the AI4FIX system, enhancing automated software maintenance and quality

assurance."

Task 3.2 deals with the challenges of “AI-enhanced Vulnerability identification” and led by

FEA aimed to develop an AI-boosted symbolic execution technique, named AI4VULN,

designed to efficiently discover vulnerabilities in source code. This approach involves the

creation of machine learning models capable of discerning which execution paths in the code

can be truncated or omitted, particularly those less likely to contain vulnerabilities. This strategy

aims to reduce the overall state space, enabling the symbolic execution to focus more

intensively on paths that have a higher likelihood of security issues. By optimizing the symbolic

execution process through AI, the task seeks to enhance the effectiveness and depth of security

analysis in source code.

The document describes the research directions, architectural design, specification, proof of

concept tests and initial versions of the AI4FIX and AI4VULN components that will be fully

developed and implemented thorough the project.

The implementation of the models is a work in progress. Proof of concept testing with the

collected datasets were conducted using third party online models.

D3.1: AI-driven self-testing and automatic error correction for robustness 8

1 Introduction

1.1 Objective of the document

This document is deliverable D3.1 AI-driven self-testing and automatic error correction for

robustness – Initial version of AI4CYBER project [1].

The document describes the research directions, plans and initial versions of the prototype

implementation of both the AI4FIX component aimed at automatic correction of robustness

related weaknesses and the AI boosted vulnerability identification component, AI4VULN, both

part of AI4CYBER framework.

1.2 Structure of the document

After the introductory Section 1, Section 2 describes the AI4FIX component, the related State

of the Art, research results and architecture and plans for the implementation. Section 3

describes the AI4VULN component following the same structure. Finally, Section 4

summarizes the document and provides future directions of research and prototype

implementation.

1.3 Relationships with other deliverables

The initial tool descriptions presented in the present document relate to the following

deliverables:

• D2.1 AI4CYBER Framework Use cases, Requirements and Architecture – Initial

Version: This deliverable provided the specification of the AI4CYBER framework,

including the description of the overall architecture and multiple viewpoints of the

framework solution. The document presented the high-level design of the framework

components, including both AI4FIX and AI4VULN detailed herein. The present

deliverable provides more technical information of the initial prototypes of both

components.

• D3.3 AI-driven self-testing and automatic error correction for robustness – Final

version: this document will present the implemented final versions of the AI4FIX and

AI4VULN components. The tools will be demonstrated in the context of WP7, in the

Use case 2 banking applications.

1.4 Contributors

The following partners have mainly contributed to this deliverable, with the support of other

partners in WP3:

• SLAB has coordinated the work in WP3 and has led the edition of the document.

Furthermore, SLAB has led the work in AI4VULN component specification, design and

prototype development.

• FEA has focused their contribution on the specification, design and development of AI4FIX

component.

1.5 Acronyms and abbreviations

API Application Programming Interface LOC Lines of Code

D3.1: AI-driven self-testing and automatic error correction for robustness 9

APR Automatic Program Repair LoC Lines of Code

AST Abstract Syntax Tree LP Linear Programming

BB Basic Block NP Nondeterministic Polynomial

CFG Control Flow Graph npm Node Package Management

CWE Common Weakness Enumerations RAG Retrieval Augmented Generation

DGRNN Deep general regression neural network SMT Satisfiability Modulo Theories

FDSS Feedback-Driven Solution Synthesis TOC Table of Contents

FP False Positive ToE Target of Evaluation

GPT Generative Pre-Trained Transformer TP True Positive

LLM Large Language Model WP Work Package

1.6 Revision history

Version Date issued Author Organisation Description

0.1 18/01/2023 Ákos

Milánkovich

SLAB TOC revised agreed

0.3 08/09/2023 Ákos

Milánkovich

SLAB Initial version

0.5 15/09/2023 Ákos

Milánkovich,

Istvan Siket

SLAB, FEA Intermediate version

0.7 15/12/2023 Ákos

Milánkovich,

Istvan Siket

SLAB, FEA Both components integrated draft

0.9 12/01/2024 Ákos

Milánkovich

SLAB Version for internal review-

0.9.1 19/01/2024 Marek

Pawlicki

ITTI Reviewed version

0.9.2 23/01/2024 Ana Rosa

Cavalli

MI Reviewed version

0.9.3 29/01/2024 Ákos

Milánkovich

SLAB Final formatting, improvements

based on review

1.0 31/01/2024 Erkuden Rios TECNALIA Final submitted

D3.1: AI-driven self-testing and automatic error correction for robustness 10

1.7 Change log

No change log entries.

D3.1: AI-driven self-testing and automatic error correction for robustness 11

2 AI4FIX Architectural Design & Implementation – Initial

Version

This section describes the initial architecture and implementation of AI4FIX based on the state-

of-the-art research results.

2.1 AI4FIX – State of the Art Analysis

This section provides the state-of-the-art analysis about AI-based robustness improvements,

code, and fix generation techniques, in relation to AI4FIX.

2.1.1 Robustness improvements

In the dynamic landscape of software development, ensuring robustness improvements is

paramount to building resilient and trustworthy applications. Recent advancements in the realm

of artificial intelligence (AI), particularly Large Language Models (LLMs), have opened new

avenues for fortifying the integrity of software systems. Leveraging the capabilities of LLMs

offers a promising approach to enhance robustness improvements in terms of security.

Within the context of software system or application development, robustness improvement is

a critical consideration for ensuring the security and resilience of the source code. Leveraging

Large Language Models (LLMs) to enhance the robustness of source code involves several key

aspects.

One of them is the security best practices and guidelines which serve as foundational pillars in

the endeavor to fortify the robustness of the source code. By integrating these principles,

developers can establish a secure coding framework that mitigates potential vulnerabilities.

Another facet of robustness improvement involves advocating for more widespread and/or

specific error handling mechanisms within the source code. This ensures that potential issues

are not only identified but are also addressed comprehensively, contributing to the overall

reliability and security of the software.

Additionally, employing different static analyzer tools is instrumental in identifying and

rectifying bugs within the source code. These tools systematically analyze the codebase,

uncovering issues that may range from common programming errors to intricate security

vulnerabilities. By proactively addressing these findings, developers strengthen the robustness

of the source code against potential exploits.

2.1.1.1 Literature review

A recent study [2] about code generation with LLMs particularly focusing on their capabilities

and limitations in handling security issues and generating secure code. The study introduces an

approach called Feedback-Driven Solution Synthesis (FDSS), where LLMs receive varied

feedback to generate solutions for security problems. The datasets used for evaluation include

LLMSecEval, SecurityEval, and PythonSecurityEval. These datasets are designed to test LLMs'

abilities in generating secure source code and include a range of Common Weakness

Enumerations (CWEs). As the study emphasized, LLMs often struggle with security issues due

to limited understanding of security vulnerabilities. Therefore, it explores how LLMs generate

code with security issues and their capability to resolve these issues through self-refining or

using feedback from external tools like Bandit, a static code analysis tool for Python. Within

the FDSS approach the Bandit static analyzer tool was used as a key component to enhance the

security capabilities of LLMs. It was utilized as a feedback source as it analyzes the code

D3.1: AI-driven self-testing and automatic error correction for robustness 12

generated by the LLMs and identifies potential security vulnerabilities. The feedback includes

the type of security issue and the specific line of code where the issue is found. This information

is crucial for the models to understand the nature of the security issues and to generate possible

solutions for resolving them. In addition to direct feedback, the study also explores the

verbalization technique, where Bandit's feedback is transformed into a detailed explanation in

natural language. This expanded explanation from Bandit is then provided to the LLMs, which

helps them gain deeper insights into the security problems and suggests methods for resolving

them. The approach also involves an iterative process where the LLMs use Bandit's feedback

to refine and improve the generated code. Each proposed solution, along with feedback from

Bandit, is sent back to the model for further refinement, aiming to address and resolve the

security issues effectively.

The FDSS approach demonstrates that LLMs can generate solutions to address security issues

effectively. The study evaluates the abilities of advanced LLMs, including GPT-4, GPT-3.5,

and CodeLlama, using various baseline techniques. The results show that GPT-4 has the highest

percentage of refining security issues in all datasets, exceeding 90%. The study also finds that

the self-debugging approach is less effective for GPT-3.5 and CodeLlama compared to direct

prompting but enhances performance in GPT-4.

In another study [3], which focuses on enhancing program repair using Large Language Models

(LLMs) together with static analysis tools. The primary objective was to enhance the

capabilities of LLMs in program repair, focusing on fixing critical bugs like Null Pointer

Dereference (NPD), Resource Leak (RL), and Thread Safety Violation. The study explores how

to leverage static analysis for bug detection, localization, and categorization, paired with LLMs

fine-tuned for the program repair task. As a result, a new framework called InferFix was

introduced which employs the Infer static code analyzer and transformer encoder model with a

Codex Cushman generator model. The Codex model is fine-tuned using the InferredBugs

dataset, enriched with relevant program repair patterns. The dataset is a metadata-rich collection

of bugs and fixes in Java and C# programming languages extracted using the Infer static

analyzer. This dataset is differentiated by the detailed information provided about each bug,

including bug type, location, and change history. The InferFix framework can identify critical

security and performance issues in the code and with the help of prompt augmentation can

generate fixes for the relevant code parts. The prompt augmentation technique is leveraging on

the dense retrieval from an external database of historic bugs and fixes, bug type annotations,

and syntactic hierarchies. Altogether InferFix achieves impressive top-1 accuracy of patch

generation, with 76% in Java and over 65% in C# across the various bug types.

Updating outdated third-party libraries is another crucial aspect of robustness improvement in

our approach. As technology evolves, so do potential threats and vulnerabilities. Regularly

refreshing dependencies to their latest versions not only introduces performance enhancements

but also addresses security patches, safeguarding the source code against potential exploits

associated with outdated components.

In addition to the techniques, robustness improvement also implies the possibility to generate

patches for code parts that are not vulnerable or not exploitable just like for example in the case

of an SQL query in the source code. Even when a vulnerability in a native SQL query may not

contain security relevant bug, or cannot be exploitable, adopting a more robust approach, such

as utilizing parameterized SQL queries, is recommended. This proactive measure ensures the

source code is fortified against potential security threats.

D3.1: AI-driven self-testing and automatic error correction for robustness 13

In conclusion, the application of LLMs for robustness improvement in the source code of

software systems or applications involves a comprehensive strategy. From adhering to security

best practices to advocating for improved error handling, leveraging static analyzers, and

updating third-party libraries, developers can fortify the security and resilience of the source

code. However, as our research shows, currently in the time of writing this document, there are

no available studies that explicitly research the possibilities of robustness improvements of the

source code with the help of LLMs. The ones that we found are partially utilizing the different

techniques of robustness improvements, but not in accordance with our specific definition of

robustness improvements.

2.1.2 Software evolution

This section delves into the state-of-the-art solutions for software evolution in source code

through the application of AI. The focus spans various dimensions, including refactoring

prediction, anti-pattern detection, latent topic analysis, commit-impact analysis, defect density

prediction, and change-related prediction. While acknowledging the role of Large Language

Models (LLMs), this review extends its scrutiny to encompass a spectrum of AI-driven

approaches, elucidating the diverse methodologies that shape contemporary efforts in software

evolutions.

Table 1: Goals of software evolution approaches

Goal Reference

Refactoring prediction [4] [2] [3]

Anti-pattern detection [4]

Analysis of latent topics [5]

Commit-impact analysis [6]

Defect (density) prediction [7] [8] [9] [10]

Change-related prediction [11] [12]

2.1.2.1 Refactoring prediction

Refactoring aims at improving the design of a software system without changing its behavior.

In [4] the focus was on the prediction of refactoring-prone classes based on several historical

code metrics. The number of refactoring is predicted with a classed classifier, first classifying

whether a class needs refactoring, then predicting whether it is 1 or more than 1. The refactoring

was identified based on information gathered from commit messages, but the different types of

refactoring were not differentiated (e. g. create superclass, extract method were treated as a

refactoring operation). 80% precision and recall were achieved for predicting non-refactoring

prone classes, it was also observed that classes with refactoring are harder to predict. Selection

of the timeframe is essential; predicting the refactoring that will happen in the following 2

months based on the previous 3 months yielded better results than the predictions based on the

previous 6 months. The most important features were coChangedNew, linesActivityRate,

coChangedFiles, linesChangePerChange.

Refactoring datasets are often imbalanced, meaning that there are far fewer instances of

refactored classes than non-refactored classes. In [5], prediction results on imbalanced and

balanced datasets were discussed, where the latter was acquired using Synthetic Minority Over-

sampling Technique. The task was to predict whether a class was refactored based on the current

version based on the previous version’s code metrics. An F-measure of over 92% percent was

obtained on every software project with a balanced dataset.

D3.1: AI-driven self-testing and automatic error correction for robustness 14

The previous approaches focused on predicting whether a class (or code segment) needs

refactoring but did not predict what type of refactoring operation is needed. In [6], several

supervised machine learning algorithms predict 7 class levels, 7 method levels and 6 variable

levels refactoring based on several code, process and ownership metrics collected from the

previous commit. A different model was trained for each refactoring operation, where for every

operation, the Random Forest model performed best, with over 84% percent accuracy (but often

above 90%). This shows that refactoring prediction/recommendation is possible with high

accuracy. However, the exact location of the refactoring operations is unknown. Other

observations were that class-level metrics were important for lower level (i.e., method and

variable) refactoring and that process and ownership metrics played a crucial role.

2.1.2.2 Anti-pattern detection

Over the evolution of a software system, if it is not maintained correctly, design problems, such

as anti-patterns can occur. Anti-patterns are closely tied to refactoring operations. An individual

anti-pattern can be removed by a series of refactoring operations. It works in the other direction

as well; an occurrence of an anti-pattern may be detected by suggested refactoring operations.

(For example, multiple Extract Method operations may indicate a God Class [7].)

In [4], the aim was to detect the God Class anti-pattern based on the evolution of structural code

metrics. There are metrics, such as lack of cohesion in methods, which could indicate a God

Class. The F-measure of the proposed convolutional approach was 77% on a highly imbalanced

dataset, which was higher than the analyzed previous approaches. An observation is that a

higher performance can be achieved by using longer metrics histories.

2.1.2.3 Analysis of latent topics

Source code can be viewed as a text corpus, where the tokens are analogous to words [8]. LDA

(Latent Dirichlet Allocation) was utilized to extract latent topics (in this domain same as

concept of concerns) from tokenized Java source code. Each concern is represented with five

words. The evolution of each topic can be analyzed over software versions. Over time, based

on the topic assignments, the emergence of functionalities and design improvements can be

analyzed.

2.1.2.4 Commit-impact analysis

Commit-impact analysis revolves around how an individual commit influences software quality

[9]. An “impactful commit” is defined as a commit, which changed the main module of the

system. Several problems could cause an impactful commit not to compile, such as, snapshot

dependencies, missing dependencies, committing without compiling in the new environment,

committing too early, committing too often, design changes, code cleanups, large refactorings.

The following code metric changes were observed: 70% of commits change the lines of code,

35% change the number of functions, and 17% change the number of classes. About 53% of

commits change the complexity metric and about 46% introduce new code smells. In most

cases, security-relevant impactful commits were below 5% of all impactful commits.

2.1.2.5 Defect density prediction

Defect density is a software quality metric, which measures the number of defects per software

module, often in terms of Lines of Code (LOC), i. e. the number of bugs divided by LOC [10].

Defect density prediction is about predicting the number of defects per module size, which is

different from defect prediction, which is a classification problem, which is about determining

D3.1: AI-driven self-testing and automatic error correction for robustness 15

whether a program module is defective or not. The data used in this case is often sparse due to

the size of modules, where bugs are absent. The proposed DGRNN (Deep general regression

neural network) achieved low errors on predicting defect density from code metrics compared

to other models.

2.1.2.6 Defect prediction

In [11], a framework was proposed for identifying error prone modules based on code metrics

(Halstead, McCabe [[11]). This task involves classifying modules into two categories (fault-

prone and non-fault-prone). A module was deemed fault-prone if it contained one or more

errors. 22 classification models were employed and compared. The importance of the chosen

model may be overestimated. Most classifiers had over 70% AUC on most of the datasets.

A similar bug prediction was discussed in [12], where 3 supervised models were utilized. In the

dataset, already known and fixed bugs were matched with their respective source code elements

and the metrics were calculated on those.

A different approach to bug prediction is to classify changes (commits) into two classes,

introducing commits and “clean” commits [13]. The approach proposed in [13] uses change

deltas (e.g., added code delta, deleted code delta) represented as bag of words vectors, change

log, metadata, and other code metrics to classify the commits into the mentioned categories. It

was found that using fewer features leads to better results. The best model achieved 0.81 and

0.94 F-measure on the buggy and clean classes, respectively, averaged over all the used

projects.

2.1.2.7 Change-related prediction

Changes in the source code can be categorized into structural and non-structural changes, where

structural changes affect the compiled code [13]. Each change can be assigned a change cost.

In [14], it was investigated which object-oriented metrics have a high correlation with change-

proneness. The object-oriented metrics for each class in a project are further processed into

class metric rank lists and a combined rank list. The top 10% of classes in the combined rank

list are deemed as change prone. WMC, LOC, RFC, NOM were found to have a high correlation

with change-proneness, both individually and combined:

• WMC (Weight Method Class) or McCabe's complexity. It counts the number of

branch instructions in a class.

• LOC (Lines of code): It counts the lines of count, ignoring empty lines and comments

(i.e., it is Source Lines of Code, or SLOC). The number of lines here might be a bit

different from the original file, as we use JDT's internal representation of the source

code to calculate it.

• RFC (Response for a Class): Counts the number of unique method invocations in a class.

As invocations are resolved via static analysis, this implementation fails when a method

has overloads with the same number of parameters, but different types.

• NOM (Number of methods): Counts the number of methods. Specific numbers for total

number of methods, static, public, abstract, private, protected, default, final, and

synchronized methods. Constructor methods also count here.

The authors of [15] proposed new metrics to measure how classes co-change (co-evolve).

Proximity of a pair of classes measures the frequency of their co-change (i.e., the number of

commits where both classes changed divided by the number of commits where either of the two

are changed.). The Change-Coupling Index of a class captures the change-coupling of a given

D3.1: AI-driven self-testing and automatic error correction for robustness 16

class with the rest of the software system. Class Change-Impact-Set is a set of classes for a

given class, which are co-changed with other that given class. The latter can be used to predict

the ripple effect on the entire system by the onset of changing a class. It was observed that class

change-coupling can be predicted by past Change-Coupling Indices and that Change-Coupling

Index captures structural dependency among classes but also discovers some hidden

dependencies as well.

2.1.2.8 Datasets

Predominantly open-source Java projects, whose histories and commit information are mined

from CVS, SVN, or GitHub repositories. In some instances, the authors used previously mined

datasets, but extracted different features.

Table 2: Datasets for software evolution

Name Comment Usage

ArgoUML [4] [4] [5]

Spring [4]

Eclipse [5] [13]

Apache projects 38 projects [6]

844 Java projects [3]

Ant, Lucene, Tomcat, Xerces [4]

Apache 1.3 [13]

Android API

 (Android Opt Telephony,

 Android Support)

 [4]

JEdit [4] [13]

AEEEM, SOFTLAB,

MORPH repositories

in total 28 datasets collected from these

repositories

[7]

NASA MDP, JM1, KC1 8 datasets from NASA MDP repository, and

two additional datasets

[8]

JFreeChart, Yari,

UCDEtector

 [14]

ANTLR4, JUnit, Mapdb,

McMMO, Mct, Oryx, Titan

 [2]

EGit, JGit, Emma, Jpf collected using SVNSearch [15]

F-Droid projects 1233 projects [3]

GitHub projects 9072 out of 10000 most starred Java projects [3]

Columba, Gaim, GForge,

Mozilla, Plone, PostgreSQL,

Subversion, JCP

 [13]

A new dataset of 46 open-source Java projects was built and discussed in [13].

Some papers may use similar projects, but the mined timeframe or features are often different.

For example, in [14], the number of change requests was mined from the issue-tracker.

19580 commits from 38 Apache Java projects were mined and analyzed in [6]. The projects

that did not have an update in 2017 and projects having fewer than 3000 commits were left out.

D3.1: AI-driven self-testing and automatic error correction for robustness 17

The exact projects were not mentioned in [9], only the fact that 15 Java and Python projects

were selected from GitHub.

2.1.2.9 Features/metrics

Several features have been used as input for models. Various metrics exist which relate to the

size of the source code, OO attributes, developer ownership and habits, complexity, code

quality, security violations, or the number of change requests. Even the vectorized source code

(e.g., as a BOW vector) was used as a feature for prediction.

The different source code metrics are applicable to different levels (project, method, file, class,

method, line). For example, OO metrics, such as Cohesion among methods or Number of

children, measure qualities for a given class.

Part of the metrics focus on the commits and measure, for example, the number of added or

deleted lines. In some cases, the metrics are applied on the change deltas (e. g. the number of

changes lines, the source code BOW vector difference).

Change metrics (e.g., Change-Coupling Index, Class Change-Impact-Set) can capture how an

individual class relates to other classes in the whole project. Therefore, all the commits made

in each timeframe are used to calculate them.

Metric suites also exist (e.g., McCabe metrics, Halstead metrics), whose parts or entirety are

widely used in several applications.

Table 3: Metrics for software evolution

Category Metric Usage Description

Size linesAdded

linesModified

linesDeleted

linesType

largeChanges

smallChanges

[4] For each file, within the

inspected period.

linedAdded, linesModified,

linesDeleted relative to total

LOC.

linesType means whether there

are more added or modified

files. largeChanges and

smallChanges refer to double or

half of the average change sizes,

respectively.

Lines of Code

variants: with/without

whitespace and comments,

only code, only comments,

only blank, only executable,

total

[4] [6] [4]

[8] [14]

[3]

The widely used metric for

measuring the size of a file/class

in terms of source code lines.

Number of functions/

Number of methods

(declared) (NMD/NOM)

[6] [4] [9]

[14]

Number of functions/methods in

a class. Often inner classes are

ignored.

Number of classes (NOC) [6] [9] Often inner classes are ignored.

NAD (Number of

attributes/fields declared)

[4] [14] Often inner classes are ignored.

D3.1: AI-driven self-testing and automatic error correction for robustness 18

Category Metric Usage Description

NBI (Number of Byte-code

instructions)

IPC (Instructions per

method)

[9] Different approach to measure

size instead of measuring only

the lines of code.

OO metrics ATFD (Access to foreign

data)

NADC (Number of

associated data classes)

[4] ATFD: number of distinct

accessed attributes of unrelated

classes.

Lack of cohesion in Methods

(LCOM)

[4] [9]

[14]

Based on the attributes accessed

by each method.

Coupling Between Objects

(CBO)

[9] [14]

Number of children (NOCH)

Depth of inheritance tree

(DIT)

Percent Public Instance

Variables (PPIV)

Access to Public data (APD)

[9]

CAM (Cohesion among

methods)

RFC (Response for a class)

[14]

Team authorCount

changeCount

authorSwitches

authorMatch

[4] Number of authors working on a

file, how often they switch.

authorMatch refers to the people

assigned to an issue and the

actual people contributing to the

implementation of the issue

Code

ownership

quantity of authors

minor authors

major authors

author ownership

[3] Authors who contributed less

than 5% are considered minor,

all the others are considered

major. Author ownership

measures the proportion of

commits made by the most

active developer.

Work habits addingChanges

modifyingChanges

deletingChanges

per author per file

[4] Developer work habits per

author per file.

Complexity changeCount

changeActivityRate

linesActivityRate

bugfix size metrics

[4] Number of changes/lines

relative to the lifetime measured

in months.

Bugfix metrics are the same as

size metrics.

Number of paths through the

code (CX)

[6] Measured by SonarQube.

Complexity is increased by one,

D3.1: AI-driven self-testing and automatic error correction for robustness 19

Category Metric Usage Description

when the control flow splits

(e.g., at an if statement).

WMC (Weighted Method

Count)

[4] [9]

[14]

McCabe’s cyclomatic

complexity summed up for all

methods of a class.

Cyclomatic complexity [9] Also called McCabe metric.

Code

quality

Number of code smells

PMD rule violations

[6]

Problem

difficulty

coChangeNew [4] How often a file was co-changed

with a newly introduced another

file.

Relation of

classes

coChangedFiles [4] Count of co-changed files

relative to the change count.

Time

constraints

avgDaysBetweenChanges

avgDaysPerLine

relativePeakMonth

peakChangeCount

changeActivityRate

linesActivityRate

[4] Number of days between

changes or per line of code.

Peak month contains the most

revisions.

Number of changes/lines of

code added relative to the

months.

Security SonarQube vulnerabilities

PMD Security Code

Guidelines violations

FindBugs (Malicious

Code/Security)

[6] Number of issues found by the

mentioned analyzer tools.

Issue

tracking

Number of change requests [14] Based on the issue-tracker

system.

Change Change-Coupling Index

(CChCI)

Class Change-Impact-Set

(ChImpactSet)

[15] CChCI measures how often a

class co-changes with other

classes.

ChImpactSet is a set of classes

for a given class that change

together.

Process quantity of commits

number of bugfixes

number of previous

refactoring operations

[3]

Text Source code BOW vector

Directory/file names

New revision source code

Change log BOW vector

[13] “Words” and operators

represented as a BOW vector.

In some cases, the deltas are

considered for a given commit.

Source code viewed as text [5]

D3.1: AI-driven self-testing and automatic error correction for robustness 20

Category Metric Usage Description

Halstead

metrics

number of distinct operators

number of distinct operands

total number of operators

total number of operands

[7] [8]1 Introduced by Maurice Howard

Halstead. Can be statically

computed

program vocabulary

program length

calculated estimated program

length

volume

difficulty

effort

[7] [8]1 Derivate metrics calculated from

each other or the other 4

Halstead metrics.

McCabe

metrics

 [7] [8]1 A metric suite consisting of

complexity and data related

metrics.

CK metrics [13] [3]2 A set of metrics calculated by

the CK tool3.

Android

metrics

Bad Smell Method Calls

WakeLock with no timeout

Number of Location

Listeners

Number of GPS Uses

XML Parsers

Network Timeouts

[9]

2.1.2.10 Models

Various statistical and machine learning models have been analyzed for robustness

improvement tasks. The models are often validated using k-fold cross-validation, with k set to

10 or 5. To overcome the problem of imbalanced datasets, sampling techniques are used, such

as SMOTE.

Table 4: Models for software evolution

Category Model Usage

Decision tree J48, C4.5 [4] [8]

LMT (Logistic Model Tree) [4] [8]

Decision Tree [9] [3]

Random Forest [8] [9] [3]

SVM SVM (and/or variants) [8] [3] [13]

Statistical Naïve Bayes [8] [9] [3]

[13]

1 In [8], only some of the Halstead and McCabe metrics were used.
2 In [3], other source code metrics are collected at class, method, and variable levels.
3 https://GitHub.com/mauricioaniche/ck

https://github.com/mauricioaniche/ck

D3.1: AI-driven self-testing and automatic error correction for robustness 21

Category Model Usage

Bayesian Networks [8]

LDA, QDA, LARS, RVM [8]

LDA (Latent Dirichlet Allocation) [5]

Logistic Regression [8] [9] [3]

Nearest neighbor k-NN, K-Star [8]

NNge (Nearest Neighbor generalization) [4]

Neural CNN (Convolutional Neural Network) [4]

GRNN ((extended) Generalized Regression

Neural Networks)

[7]

Neural Network, Multilayer Perceptron [8] [3]

Gated Recurrent Unit [2]

LLMs
ChatGPT, CodeLlama, Copilot, Claude [16][17][18][

19]

Other ARIMA [14]

Combined Rank List [14]

Rip (Repeated Incremental Pruning) [4]

2.1.2.11 Granularity

There could be two aspects from which granularity can be considered when looking at software

evolution. The first is a structural aspect (e.g., module, file) and the second is a time aspect (i.

e. how often the changes are recorded).

2.1.2.12 Structural aspect

When discussing how a software evolves, it is important to consider what structural level we

are considering. Evolution can be observed on the following levels (ranging from most coarse

to the finest): project, module, file, class, method, and line. Some of the different code metrics

discussed earlier can be calculated for multiple levels, but some are restricted to a given

granularity (e.g., cohesion among methods).

2.1.2.13 Time aspect

When using a versioning system (e.g., Git), the changes are recorded as commits, which can

provide snapshots of a system. The underlying problem here is that a developer may commit

once or twice a day, which means that all the intermediary changes made between commits

cannot be found in the versioning system. In [15] an IDE tool was proposed, which records all

the high-level changes made to a file. This enables us to reconstruct the path between two

commits and have as fine-grained information as possible. Looking at these changes makes it

possible to categorize development sessions (i. e. sessions between commits) based on the

activity (e.g., bug-fixing session, new development, trial of multiple approaches).

The methods presented above capture the properties of the software in a way that the change of

those properties can be analyzed on a timeline to show insights in the evolution of the software.

Further research will be required to select the metrics which capture the most of security-

relevant changes and would result in the best model for AI4FIX.

D3.1: AI-driven self-testing and automatic error correction for robustness 22

2.1.3 AI-based program repair

This section processes the possible usage of AI-based Automatic Program Repair (APR),

especially using Large Language Models (LLMs). The section details the available models,

possibilities, and state-of-the-art results. The results concentrate on the APR of vulnerabilities

as this field is the focus of AI4VULN and AI4FIX.

2.1.3.1 State-of-the-art analysis

A wide spectrum of tasks related to source code can be handled by LLMs, notably the automatic

correction of errors, particularly vulnerabilities as noted in [20] Since the development of GPT-

2, various researchers, including Paik and Wang [21], have explored this domain. The bug-

fixing potential of a finetuned GPT-2 model was specifically examined by Lajkó et al. [22]

using the BugsJS [23] dataset, featuring elementary JavaScript bugs. Additionally, Lajkó et al.

[[24] conducted a comparative analysis of fine-tuned and standard versions of GPT-2.

The QuixBugs[25] dataset, a compilation of synthetic bug examples in Python and Java, was

utilized by Prenner et al. [26]. OpenAI's Codex was employed to rectify these intentionally

inserted flaws in the dataset, showcasing notable results, especially with Python code. They

could fix 57.5% of the flaws in the dataset. In a similar vein, Sobania et al. [27] applied

QuixBugs for assessing the performance of OpenAI's ChatGPT model, registering a substantial

fixing rate (77.5%).

Despite these remarkable findings, it is crucial to recognize that these investigations primarily

revolve around minor, straightforward, and artificial programming challenges, potentially not

mirroring complex real-world scenarios. Hence, there's a need for further assessment with more

intricate programming problems. Studies like those by Charalambous et al. [28] and Hammond

et al. [29] explored the capabilities of GPT models in both generating and fixing coding errors.

Meanwhile, real-world application-based studies are also being conducted, as seen in the work

of Nashid et al. [30] and Xia et al. [31] utilizing actual projects and datasets like Defects4J [32]

and ManyBugs [33]

Chunqiu et al. [34] embarked on a comparative study of different language models in the

context of automated repair. Their approach involved validating plausible fixes by running test

cases. Further, an automated repair tool named AlphaRepair was introduced by Chunqiu and

Lingming [35] emphasizing interactive validation of fixes using line-level information and test

suites. However, in real-world scenarios, particularly concerning software vulnerabilities, such

iterative generation and testing processes may not be feasible due to the typical absence of

vulnerability-specific test cases.

To truly understand the efficacy of GPT-based automated vulnerability repair in practical

settings, studies need to replicate more authentic scenarios. This involves handling genuine

vulnerability cases without preliminary test-based evaluations. Subsequent tests should be

confined to verify the accuracy of the devised fixes. A study by Wu et al. [35], using real-life

vulnerability cases from the Vul4J [36] benchmark and VJBench, made strides in this direction,

though their methodology included providing specific hints and utilizing a test suite for fix

validation.

2.1.3.2 Available models (LLMs)

As LLMs gained space in software engineering not only engineers adapted to the models, but

the models were trained to fit developer needs. There are multiple closed- and open-sourced

models. We briefly cover the most likely models to be used with their pros and cons:

D3.1: AI-driven self-testing and automatic error correction for robustness 23

Table 5: Comparison of LLMs

Model name (Company) Pros Cons

Codex (OpenAI)

Trained in source code.

Already available via various

plugins.

Privacy due to OpenAI.

Monthly or per-usage costs.

GPT-4 (OpenAI)

Instructions following.

Mixed natural language and

source code.

Latest transformer model.

Privacy due to OpenAI.

Monthly or per-usage costs.

CodeLlama (open-source)

Open-source on Hugging

Face.

No privacy issues.

Self-hosting costs.

Fine-tuning costs.

Lower success rate.

2.1.3.3 Available benchmarks

As the models require evaluations the necessity of benchmarks with wrong and fixed versions

arises. The available benchmarks vary in size, data-source, and available tests. The processed

literature contained not exclusively the following benchmarks:

Table 6: Benchmarks

Benchmark name Data source Pros Cons

BugsJS Real-life

High number of

examples.

Testcases.

Simplicity of bugs.

QuixBugs Artificial
Multilingual.

Commonly used.

Trivial tasks.

Simplicity of bugs.

Vul4J Real-life

Hand-validated.

Proof of

vulnerability.

Complex problems.

Low number.

2.1.3.4 Setup of real-life APR

Based on the literature analysis the experiment should reflect scenarios which could be

acceptable or feasible on a project. The main restrictions are on the information provided for

the model. The fix should not depend on the exact line of the problem as it might not be

available in every case. Proof of the problem should not be provided as in most cases it is not

available, e.g., test cases. The model should not generate multiple responses as a real-life

scenario cannot rely on human prioritization and lastly, the results should be consistent among

separate executions, which regarding probabilistic methods is a must-include. In our solution,

the VSCode Plugin could provide multiple suggestions for fixing the code, although these

multiple suggestions should be good fixes and the developer should not consider the suggestion

as invalid fix. Therefore, even with our Plugin providing multiple fixes, we need to examine

D3.1: AI-driven self-testing and automatic error correction for robustness 24

the Top-1 results and consistency. As the results might not match the desired outcome it must

be examined if the model response could be used as a hint for the developers and therefore used

in a semi-automatized program repair. The evaluation must be performed on a real-life

benchmark such as Vul4J.

In our experiment we executed APR tasks on vulnerabilities using the Vul4J benchmark. We

evaluated the generated fixes on Vul4J vulnerability test cases and with manual validations. We

executed the fix generations twice to investigate the consistency of fixes. The experiment also

included the helpfulness of GPT in semi-automated program repair. The experiment started

with prompt engineering which resulted in a prompt that contained description about the project

to be fixed, method level vulnerability information, vulnerability category and the vulnerable

source code (Java). The prompt requested the model to generate a fix for the provided source

code and provide a textual fix (detailed information about how to fix the problem).

Our study showcased the potential of GPT-4 in addressing real-world vulnerabilities, diverging

from many studies by focusing on practical application. We used objective tests and human

evaluations to assess the feasibility and acceptability of GPT-4's solutions. The findings reveal

that GPT-4's proficiency in real-world scenarios is promising but not flawless. It often provides

helpful insights for developers, even if it struggles with complex fixes. Most of its successful

solutions are simple, best-practice based. Overall, GPT-4 marks a significant step forward in

automatic vulnerability fixing, highlighting the need for continued research to refine its

capabilities for complex security challenges.

The numerical results from our experiment are the following:

- Using only the vulnerability type, GPT-4 achieved fixing rates of 32.43% and 37.84%

across separate executions, averaging 35.14%. These outcomes are relatively lower than

those from small, synthetic datasets, yet they align with or slightly surpass those from

studies involving real-world vulnerabilities, despite not having precise vulnerability

location or details. This suggests potential for future semi-automated or fully automated

applications.

- Textual fixes provided by GPT-4 were found to be beneficial in 58.70% and 50.00% of

instances for the first and second runs, respectively. Notably, in 19.57% and 10.87% of

these cases, the text responses alone were valuable, even when the accompanying source

code was not. This indicates a strong potential for using textual fixes in semi-automated

program repair and source code review processes.

- To summarize all the results, GPT-4 fixes are reliable across individual runs, reaching

a 31.58% pass ratio considering both runs. Considering the two separate runs, we can

state that fixes are reliable and consistent, but consistency is not related to vulnerability

types but rather to good practices.

This experiment covered a small field of possibilities regarding LLMs in APR although it is

evident that LLMs could be used for this task. Further prompt engineering, fine-tuning and

methodologies for input should be examined which might be based on documentation

generation and program synthesis completely.

2.1.4 AI-generated automated testing

This section delves into the intricate challenges of automated software testing, particularly in

the context of leveraging large language models (LLMs) for code generation and evaluation.

One of the core problems addressed is the difficulty in creating effective test suites that can

cover a wide range of scenarios and catch potential bugs in code. We discuss the limitations of

D3.1: AI-driven self-testing and automatic error correction for robustness 25

existing testing approaches, which often fail to account for the nuances and complexities of

real-world software development, such as handling diverse APIs and understanding the intent

behind code snippets.

To tackle these challenges, a paper from Tufano et al. [37] presents a comprehensive study in

the field of automated unit test generation, focusing on the use of AI models to enhance this

process. The research was structured around several key research questions (RQs), each aiming

to explore different aspects of unit test generation using AI models, like examining the impact

of model pretraining on unit test case generation and investigating how different levels of focal

context affect training for unit test generation.

The study addresses the challenge of generating high-quality, syntactically correct unit test

cases that conform to standards and invoke a variety of testing APIs. It also focuses on

generating test cases that are realistic, accurate, and human-readable.

The datasets used include the Defects4j projects, which provide a reliable infrastructure for

generating, compiling, executing, and evaluating test cases for various popular open-source

software projects.

The study presented a new approach for automated unit test generation called ATHENATEST.

It was based on a BART transformer model, which has undergone both English and source code

pretraining. This pretraining is crucial as it helps the model learn meaningful representations

from real-world examples, which are then applied to the task of generating unit test cases.

Beyond the initial pre-training, the model was also fine-tuned. It was performed as a translation

task, where the source is a focal method (the method to be tested), and the target is the

corresponding test case written by a software developer. This process uses a parallel corpus of

mapped test cases, aiming to learn the mapping from a focal method to a test case as a

conditional probability. The training employs cross-entropy loss and the Adam optimizer, with

shared vocabulary embeddings between the Encoder and Decoder. The model was utilized with

a specific representation of the input called the focal context method, which is about the

inclusion of additional contextual information surrounding the focal method. This context is

crucial for the model to generate more accurate and relevant test cases. The method involves

experimenting with different levels of focal context to determine which variant provides the

best performance. The focal context includes information such as the focal method, class name,

constructors, other methods, and fields.

ATHENATEST was evaluated on five Defects4j projects, generating approximately 25K

passing test cases (about 16% of the overall generated tests) that covered 43.7% of the focal

methods with only 30 attempts. The generated test cases were classified based on syntax

correctness, compilability, execution, coverage, and correctness. The results showed that

ATHENATEST could generate test cases that were syntactically correct, compilable, and

executed correctly, with a significant portion achieving adequate test coverage.

Beside the evaluation on a benchmark, ATHENATEST was also compared with EvoSuite and

GPT-3 in terms of code coverage and developers' preferences. The comparison revealed that

ATHENATEST outperformed GPT-3 and achieved comparable coverage to EvoSuite. A

survey conducted with professional developers showed a strong preference for test cases

generated by ATHENATEST over those by EvoSuite, particularly in terms of readability,

understandability, and testing effectiveness.

In summary, ATHENATEST represents a significant advancement in automated test case

generation, with the advantage of including the ability to generate realistic, accurate, and

human-readable test cases that are like those written by developers. It also leverages the power

D3.1: AI-driven self-testing and automatic error correction for robustness 26

of transformer models and benefits from both natural language and source code pretraining.

However, the approach has some limitations, such as the challenge of incorporating project-

level context and supporting multiple testing frameworks. Additionally, deploying large neural

models like ATHENATEST in production environments poses significant engineering

challenges.

While another study from Schäfer et al. [38] proposes a refined approach to prompt engineering,

which is critical for improving the performance of LLMs in generating test cases. The authors

introduce a set of prompt refiners—tools that enhance the quality of prompts used to guide the

LLMs. These include the DocCommentIncluder, which incorporates documentation comments

into prompts, and the SnippetIncluder, which adds usage snippets for functions. The paper

evaluates the impact of these refiners on test generation, revealing that while some refiners

significantly improve test coverage and pass rates, others show less impact, indicating the

nuanced nature of LLM-based test generation.

The paper presents TESTPILOT, an implemented tool that embodies the proposed solutions,

and it is used to conduct an empirical study to assess the effectiveness of different prompt

configurations. TESTPILOT's performance is measured against several metrics, such as the

percentage of passing tests and achieved coverage. The results from TESTPILOT are compared

with baseline configurations, demonstrating that the use of prompt refiners can lead to

substantial improvements in the quality of generated tests.

The TESTPILOT tool was tested on JavaScript. The document specifies that while the approach

is language-agnostic, the current implementation targets JavaScript, and the results cannot be

generalized to other languages. The tool was evaluated on 25 Node Package Manager (npm)

packages, which indicates that it was indeed focused on the JavaScript ecosystem. The

document also compares TESTPILOT's performance to Nessie, another state-of-the-art

JavaScript test generator, suggesting that the choice of JavaScript was also to provide a

comparative analysis with existing tools in the same programming language domain.

However, the study also uncovers that the inclusion of certain information, like function

implementations, can sometimes confuse the model, leading to less effective test cases. This

highlights one of the biggest challenges in AI-assisted code generation: the balance between

providing sufficient context to the model without overloading it with information that may

detract from its performance.

In conclusion, the document suggests that while tools like TESTPILOT and the use of LLMs

in software testing represent a significant advancement, there is a delicate balance that must be

struck in prompt engineering. The research indicates a promising direction for future work,

which includes refining the strategies for prompt construction and exploring the integration of

LLMs with other software testing methodologies to enhance the robustness and reliability of

automated test generation.

Another study from Siddiq et al. [39] which is an empirical study that is also focusing on the

use of LLMs for unit test generation. This research is pivotal in demonstrating the capabilities

and limitations of LLMs in software engineering, particularly in automated test case generation.

The study utilized several prominent LLMs, including GPT-3.5-Turbo, StarCoder, and two

configurations of Codex (Codex 2K and Codex 4K). These models were chosen for their

advanced capabilities in code generation and their potential applicability in generating unit

tests.

The study primarily investigates the effectiveness of LLMs in generating unit tests for software.

It uses two main datasets for evaluation: the HumanEval dataset, containing more than 160

D3.1: AI-driven self-testing and automatic error correction for robustness 27

common programming problems with known solutions, and the Evosuite SF110 dataset,

comprising 110 mature real world open-source Java projects. These datasets are crucial for

assessing the practicality and reliability of the generated unit tests.

One of the significant challenges highlighted in the document is the LLMs' ability to generate

high-quality unit tests that are both correct and comprehensive, and free of test smells. The

complexity lies in ensuring that these tests cover a wide range of scenarios and effectively catch

potential bugs, a task that is often challenging for automated systems. Compounding this

difficulty, the complexity of software projects and the limitations of current LLMs in

understanding code context and requirements posed significant hurdles.

The study explores different configurations and contexts to optimize the performance of LLMs

in test generation. It assesses the quality of unit tests not only based on coverage (line and

branch) and correctness but also on the presence of test smells using tools like JaCoCo and

TsDetect. The study's results varied across different models and datasets. For the HumanEval

dataset, the LLMs achieved line coverage ranging from 67% to 87.7% and branch coverage

from 69.3% to 92.8%. Codex (4K) showed the highest line and branch coverage of 87.7% and

92.8%, respectively. However, for the SF110 dataset, the performance was significantly lower,

with branch and line coverage less than 2% for all models. Among them, Codex (2K) had the

best line coverage at 1.9%, and GPT-3.5-Turbo had the highest branch coverage.

In summary, this document provides an in-depth analysis of the potential and limitations of

using LLMs for automated unit test generation. It offers valuable insights into how these models

can be optimized and highlights the need for further research to enhance their effectiveness in

practical software development scenarios.

2.2 AI4FIX System Requirements Analysis

This section will explain how the relevant system requirements identified in D2.1 will be

covered by AI4FIX.

Table 7: System requirements coverage by initial version of AI4FIX component

Req.

ID

Req. name Req.

description

Priority Coverage How addressed

SR-

003

Vulnerability

fixing

The

AI4CYBER

framework

shall be able

to fix the

vulnerabilities

via the

AI4FIX

component

found in the

source code

by the

AI4VULN

component.

M Covered For the

vulnerabilities

identified by the

AI4VULN

component

AI4FIX will

generate

candidate fixes

using the generic

and custom

models built.

D3.1: AI-driven self-testing and automatic error correction for robustness 28

Req.

ID

Req. name Req.

description

Priority Coverage How addressed

SR-

004

Robustness

improvement

The

AI4CYBER

framework

shall be able

to add

robustness

improvements

to the source

code verified

by tests via

the AI4FIX

component.

M Covered Generic

robustness

improvements

will be added by

AI4FIX by the

learnt software

evolution

models. Test will

be generated for

the proposed

fixes using the

custom model to

ensure their

correctness.

SR-

005

AI4FIX-

AI4VULN

interoperability

The AI4FIX

component

should be able

to read the

output of the

AI4VULN

component.

M Covered A JSON structure

has been defined.

See 2.4

The requirements validation will be carried out in WP7.

2.3 AI4FIX Specification

The AI4FIX tool uses natural language processing techniques harnessing the knowledge from

the models (via online API or locally implemented) we build according to software evolution.

AI4FIX has a VSCode plugin UI for interacting with the developers (for selecting accepting,

rejecting, modifying generated fixes, and initiating the execution of the tool).

In the following a detailed specification of the AI4FIX component according to C4 model

(https://c4model.com/) is provided.

2.3.1 System context

At the system level AI4FIX is employed by developers and/or security evaluators to correct

the security-relevant bugs and improve robustness.

https://c4model.com/
https://c4model.com/

D3.1: AI-driven self-testing and automatic error correction for robustness 29

Figure 1: System context of AI4FIX

At the top left of the diagram in Figure 1, we can find AI4FIX depicted as a Software System

that serves as the principal component responsible for automated robustness improvements,

vulnerability fixing, and test generation. This system directly interacts with the source code to

apply these improvements and tests.

AI4VULN is another Software System placed below AI4FIX, which identifies vulnerabilities

within the software. It aims to provide the AI4FIX system with identified vulnerability

locations, signaling precisely where the AI4FIX system should focus its fixing processes.

On the right side of the diagram, there is the Project repository, which is an external element

represented as another Software System and is labelled “E.g., GitHub containing source code

of the ToE system.” This repository is where the source code of the Target of Evaluation (ToE)

resides. Code changes generated by the AI4FIX system are applied here.

At the bottom right, there is a Person icon labelled Developer, Security Engineer, and

Evaluator, suggesting these roles are involved in the process, providing human feedback and

expertise necessary to review and validate the fixes and improvements made by the AI4FIX

system.

Arrows in the diagram indicate the flow of information. The arrow labelled Code changes

shows that modifications made are fed back into the repository. Meanwhile, an arrow labelled

Applying fixes mutually connects the Developer/Security Engineer/Evaluator roles to

AI4VULN, which indicates that human-reviewed fixes are incorporated into the vulnerability

identification process to refine its accuracy.

2.3.2 Container model

At the container level we distinguish the following parts of AI4FIX:

D3.1: AI-driven self-testing and automatic error correction for robustness 30

Figure 2: Container model of AI4FIX

The container model diagram in Figure 2 provides a more detailed view of the AI4FIX system

than the previous context diagram, breaking down the system into its main components or

containers.

Software evolution is a Python application responsible for metrics and bug-fix pairs extraction

from the source code.

Model evolution is a container characterized as an LLM which uses the extracted features from

the Software evolution process. It consists of both generic and custom models, indicating that

it is designed to be adaptable to different types of software projects. This container interface

with Identified vulnerability locations, showing that it uses information about vulnerabilities

detected by the AI4VULN system to evolve its models.

Fix and test generation is a container that seems to encompass multiple technologies (JAVA +

Python + VSCode application) and is responsible for automated robustness improvements,

vulnerability fixing, and test generation. This indicates a multifaceted approach to generating

solutions for identified issues and verifying that the fixes are correct and effective.

2.3.3 Component model

The following three diagrams describe the container level of AI4FIX as an automated system

designed to detect and fix software vulnerabilities, with a focus on continuous learning and

improvement through machine learning models and human expertise.

D3.1: AI-driven self-testing and automatic error correction for robustness 31

Figure 3: Component model of Software evolution

The component model of the Software evolution component (Figure 3) provides an architectural

overview of the parts making up this specific Python application within the AI4FIX system.

This model details how the software evolution process involves mining and storing datasets

pertinent to software development and maintenance.

Jira Miner is a Python application whose role is to collect bug-fix pairs from JIRA and GitHub

as described in 3.4.5.1.

GitHub Miner is another Python application that parallels the function of the Jira Miner but

focuses specifically on mining data directly from GitHub repositories. The goal is to collect

bug-fix pairs from GitHub, especially those related to commit history and interactions with

Static Application Security Testing (SAST) tools, like Spotbugs or Open Static Analyzer.

Both Jira Miner and GitHub Miner contribute to the construction of two distinct datasets:

Generic dataset is a container that stores bug-fix pairs collected from both JIRA and GitHub.

JSON format used for storage as it contains a variety of bug and fix examples that can be

considered universal or generic across multiple projects.

D3.1: AI-driven self-testing and automatic error correction for robustness 32

Custom dataset is another container like the Generic dataset in its purpose but is customized

for specific projects. This dataset gathers bug-fix pairs but with a focus on tailoring the collected

data to the needs of the ToE's specific software project.

The arrows labelled Stores point from the Jira Miner and GitHub Miner components towards

both the Generic dataset and the Custom dataset, indicating that both miners contribute data to

these datasets.

Extracted features indicate that the processed and useful information from the datasets is

provided to other components or processes, for further analysis or as inputs for model training.

Model evolution shows that the extracted features from the datasets feed into a Large Language

Model, which is involved in the development of both generic and custom models, as indicated

by the component label. This model uses the data to learn and evolve effectively, presumably

generating better solutions for fixing bugs and vulnerabilities.

Overall, the components within the Software evolution application are responsible for data

mining, processing, and storage, with the goal of supporting the continuous improvement of

software robustness and security through better-informed machine learning models.

Figure 4: Component model of Model evolution

The component model of the Model evolution (Figure 4) component details the internal structure

and interactions involved in developing and refining the machine learning model within

AI4FIX. This is a deeper view into the Model evolution container, which was previously

described as an LLM, and now we can see its components and their connections.

The model revolves around four main components:

Software evolution sits on the periphery as an adjoining container (a Python application), which

is not a component of Model evolution but is crucial as it supplies Extracted features that are

inputs for the model evolution process.

D3.1: AI-driven self-testing and automatic error correction for robustness 33

Training, fine-tuning, RAG is a Python application that stands as the central component

responsible for the development of the machine learning model. RAG (Retrieval-Augmented

Generation) is used for enhancing language model predictions by integrating retrieved

information. This application processes extracted features and through training and fine-tuning,

it continuously improves the model's performance.

Model Database is a Vector Database characterized as storing Generic and customized data.

This database retains the information necessary for the Training, fine-tuning, RAG application

to operate effectively, it includes encoded representations of generic and project-specific

examples that the model can use for learning and reference.

Model itself is a Large Language Model being both 'Generic and customized,' indicating that it

serves a dual purpose: it is capable of general application but can also be tailored to specific

project needs.

On the right-hand side, beyond the dashed boundary of Model evolution, is the Fix and test

generation container. It receives influence from the model's output and provides Feedback into

Training, fine-tuning, RAG. This represents a feedback loop where the results from generated

fixes and tests (from the JAVA + Python + VSCode application) help to refine the training

process, leading to a machine learning model more adept at solving the types of problems it

encounters.

Figure 5: Component model of Fix and Test generation

The Fix and test generation container (Figure 5), within the AI4FIX system, is composed of

critical components that interact with both internal processes and external entities to enhance

software robustness and security:

Fix generation is a Python application that not only generates code fixes based on model outputs

but also interacts with the Project repository. This interaction involves pushing Fixed source

D3.1: AI-driven self-testing and automatic error correction for robustness 34

code back to the repository, which is an integral part of incorporating enhancements into the

actual software project.

Test generation creates automated tests designed to verify software functionality. The tests

produced by this component are critical as they are used in conjunction with the Test execution

component and ultimately serve to ensure that the fixes generated do not adversely affect the

software's functionality.

Test execution, utilizing Python and JAVA technologies, carries out the tests provided by the

Test generation component. This execution process is crucial as it provides the necessary

Human feedback loop for the human roles, namely Developers, Security Engineers, and

Evaluators. Through their expertise, these individuals contribute to validating the fixes and the

functioning of the software. Additionally, this component interacts with the Fix visualizer to

enable an understanding of the context and impact of the fixes on the software.

Fix visualizer is a VSCode plugin that provides a visual representation of the generated fixes.

It serves a dual purpose: firstly, it helps developers and other stakeholders to visually

comprehend the nature of the fixes within their code environment; secondly, it can interact with

the results from the Test execution to visualize the outcomes, thereby supporting assessments

and potential iterations of fix implementations.

2.3.4 Hardware requirements

The estimated hardware requirements for running an offline model on CXB premises for Use

case 2 on baking applications.

Table 8: Hardware requirements for the tools

Item Property

CPU cores 16

RAM 32 GB

GPU RAM 64 GB

Storage 1 TB SSD

Operating

System

Ubuntu Server Latest

Other CUDA compatible GPU

In case the estimated hardware requirements cannot be met, the performance may degrade.

2.3.5 Software evolution

The following section defines our nomenclature for software evolution and related concepts.

- Software evolution – concept: A collection of techniques which aim to extract

knowledge for fixing vulnerabilities from the development history of the selected

project and other relevant projects.

- Commit classification: We analyze historical commits of the repository in order to

obtain metrics that we can learn to classify the commits based on their content (e.g.,

JIRA class): bug fix, new feature, test, revert, etc. and security relevance. The commit

classifier can also consider the relevance of the observed code segment to security

requirements.

- SW evolution generic model: We want to learn – by examining a wide range of commits

from various projects – how certain potential vulnerabilities detectable by SAST and

D3.1: AI-driven self-testing and automatic error correction for robustness 35

DAST tools (e.g., Spotbugs) are fixed. We collect many bug-fix pairs for security and

robustness improvement to train a model which can generate the fixes. We would like

to gather all the hidden fixes by running SAST tools on each commit and observing the

differences.

- SW evolution customized model: We want to learn – by examining the previous

commits from the analyzed project – how certain potential vulnerabilities detectable by

SAST and DAST tools (e.g., Spotbugs) are fixed in the selected project and customize

our generic model with parameters characteristic for the selected project. We also take

coding style and naming conventions into account to customize our generated fixes for

the selected repository.

2.3.6 Code synthesis using AI and LLM

2.3.6.1 Evaluating the code synthesis capabilities of LLMs

Code synthesis is currently a hot topic as LLMs are getting better at not only understanding

natural language but transforming it to source code. The main scope is creating source code that

passes all the functional conditions based on natural language descriptions. Although it is

important, factors like software security and source code maintainability are not to be forgotten

either.

The related works in this area mostly evaluate one LLM but even ones that compare LLMs

usually lack a proper comparison, a proper evaluation. Dominik et al. [40] did a comparative

study on Copilot and Genetic program synthesis. Their main goal was to compare two

methodologies for program synthesis and did not measure the quality of the synthetized code.

In the work of Madi [41] the readability is measured by static code analysis, but no further

qualities are checked and is heavily based on human annotators, including 21 people.

A proper evaluation regarding LLMs should focus on 4 elements.

- Selecting the right prompt is crucial as the input of LLMs is the prompt. If this prompt

must be too detailed, the developer does not gain anything from using an LLM. Creating

too abstract descriptions could result in the LLM generating results that fit the abstract

description, but the developer needs a more specific solution. Selecting an abstract

prompt enough with the best descriptions is called prompt-engineering. Various models

might be more dependent on prompting than others.

- Checking functional validity is the goal of source code synthetization. Functional

validity could be tested by predefined testcases or even human testing, although in an

automatic way testcases are preferred.

- Checking technical quality is not to be forgotten as this includes the security and

quality of source code. It might be checked by source code analyzers or human reviews.

When applying a source analyzer during the evaluation, the same settings should be

used as in an ongoing project to achieve the best fitting results.

- Human evaluation requires tremendous resources although, if possible, it reflects how

likely the developers are to use, accept the LLM synthetized source code. Human

reviewers should not be aware of the functional and technical evaluation results and

should not be aware of which model’s code they are reviewing.

Besides these elements additional factors could be investigated. An example is the performance

of the source code or Non-functional validity. The complexity of runtime or space could have

a great impact on special software.

D3.1: AI-driven self-testing and automatic error correction for robustness 36

We evaluated Copilot and ChatGPT 3.5 on the previously mentioned criteria. The descriptions

of natural language came from a benchmark created for code synthetization evaluation, PSB2

[42].

We checked functional validity using 10.000 test cases from the benchmark’s test suit. The

results are in the Table 9 for every task available in the benchmark. The results show what

percentage of the 10.000 test cases passed for every task with the LLM generated source code.

Table 9: Functional validity comparison

Task name ChatGPT Copilot Diff

basement 100% 100% 0%

bouncing balls 5% 20% -15%

bowling 5% 0% 5%

camel_case 100% 100% 0%

coin_sums 100% 0% 100%

cut_vector 86% 0% 86%

dice_game 54% 100% -46%

find_pair 0% 100% -100%

fizz_buzz 100% 100% 0%

fuel_cost 100% 100% 0%

gcd 100% 100% 0%

indices_of_substring 23% 100% -77%

leaders 18% 18% 0%

luhn 0% 0% 0%

mastermind 100% 36% 64%

middle_character 100% 100% 0%

paired_digits 100% 81% 19%

shopping_list 100% 0% 100%

snow_day 10% 5% 5%

solve_boolean 75% 100% -25%

spin_words 100% 100% 0%

square_digits 100% 100% 0%

substitution_cipher 100% 100% 0%

twitter 100% 100% 0%

vector_distance 98% 0% 98%

D3.1: AI-driven self-testing and automatic error correction for robustness 37

The technical qualities are checked by SonarQube Scanner. We investigated both code smells

and vulnerabilities. We also investigated various code metrics. ChatGPT performed slightly

better on these evaluations. Finally, we asked 5 developers to review source code generated by

the two models. The developers had to score from –2 to +2 without 0 on the following

properties: First Impression, Usability, Readability, Modifiability, Acceptance of the code. The

developers also had to decide which code is better without knowing which code is generated

by ChatGPT or Copilot. The results are presented in Table 10.

Table 10: Result of developers’ evaluation

Task name First

Impression
Usability Readability Modifiability Acceptance

G

/

C G C G C G C G C G C

basement 10 10 10 10 10 10 10 10 10 10 -1

bouncing_balls 9 2 0 3 8 4 9 7 2 3 -3

bowling 2 6 7 5 6 6 4 3 5 4 0

camel_case 6 4 -1 5 8 -2 8 2 -1 4 -1

coin_sums 9 7 5 7 9 6 9 9 10 9 -5

cut_vector 9 -3 8 0 9 4 8 4 9 1 -6

dice_game 8 5 6 9 9 7 9 8 7 9 -3

find_pair 9 0 7 4 8 4 8 5 8 2 -5

fizz_buzz 7 6 10 10 9 8 7 7 9 9 2

fuel_cost 8 6 9 10 10 5 9 9 10 9 -3

gcd 10 -1 10 7 9 4 9 7 10 3 -9

indices_of_substring 9 2 7 7 9 3 9 5 9 6 -2

leaders 9 -6 8 6 10 -1 8 0 9 4 -9

luhn 2 -5 1 -4 8 4 6 2 -1 -7 -5

mastermind 5 3 8 5 8 4 6 3 8 3 -3

middle_character 8 8 9 9 7 10 7 6 8 10 3

paired_digits 9 4 10 6 10 5 9 7 10 4 -6

shopping_list 10 1 10 2 9 -2 9 8 10 3 -8

snow_day 8 4 -8 -1 7 2 3 7 -9 0 3

solve_boolean 3 4 0 4 5 8 2 1 -2 4 2

spin_words 10 5 10 6 10 7 9 7 10 7 -1

square_digits 8 8 9 7 7 6 7 7 9 8 -7

substitution_cipher 4 9 9 4 6 8 2 6 8 5 -1

twitter 10 8 10 8 10 7 10 9 10 8 -4

vector_distance 6 2 6 7 9 7 7 6 7 8 -1

In Table 10, the maximum value is 10, as 5 developers were included and could rate it on max

2. The minimum is –10 similarly. G/C column shows that the developer preferred ChatGPT (G)

or Copilot (C). It was measured on –2 to +2 scale without zero too, therefore the close the values

to –10 ChatGPT is preferred while values closer to +10 mean Copilot is preferred. Values close

to zero show that developer opinions were different.

D3.1: AI-driven self-testing and automatic error correction for robustness 38

The results showed that developers did not consider the model synthetized code perfect or out-

of-the-box usable, but they considered the code acceptable. Developers slightly preferred

ChatGPT generated source code.

2.3.6.2 Robustness improvement

Robustness improvements in AI4FIX are designed to be small and automatically applicable

fixes which will not alter functionality. Learnt from the datasets of bug-fix pairs in software

evolution generic model we can detect potential improvement opportunities and generate

candidate fixes using the customized model to be tailored to the current repository. This feature

is a work in progress at the time of writing as the models are not yet trained. Based on our initial

tests LLMs can improve code snippets but require tight control over functional degradation,

therefore test generation needs to be developed first.

2.3.6.3 Test generation

We have researched some tools already available for test generation on the market.

This article [43] discusses the significance of AI-driven tools in test automation, highlighting

their role in enhancing efficiency, cost-effectiveness, and reliability. It covers the evolution of

test automation, the impact of AI on reducing human errors, and the transformation of QA

methodologies. The article also emphasizes the growing complexity of applications and the

increasing reliance on AI for maintaining quality standards. It presents seven popular AI-

powered test automation tools, each with unique features and capabilities, catering to different

testing needs in web, mobile, desktop, and API environments. The article concludes by stressing

the importance of defining clear goals for test automation to achieve desired outcomes and ROI.

Here are the seven AI-powered test automation tools mentioned in the article, with brief

descriptions:

- Testsigma: An AI testing tool for web, mobile, desktop applications, and APIs,

featuring auto-healing functionalities and natural language processing for test creation.

- TestCraft: Built on Selenium, this tool is designed for both manual and automated

testing, particularly for web-based software.

- ACCELQ: A codeless tool enabling multi-channel test automation (web, mobile,

desktop, API), focusing on business process-focused automation.

- Applitools: Offers AI-powered visual UI testing and monitoring, integrating with

existing tests and providing cross-browser, cross-device testing features.

- Testim: An AI-powered platform for custom web applications, enabling rapid creation

of UI and end-to-end tests with AI stabilization.

- Sauce Labs: Provides comprehensive testing across devices, browsers, and operating

systems, with functionalities for functional testing and parallel testing.

- Functionize: A cloud-based tool using machine learning and AI for easy test case

creation using natural language processing, suitable for desktop and mobile browsers.

We conducted testing of Large Language Model-based test generation. The OWASP

Benchmark Project [44] is a Java-based suite designed to assess the effectiveness of software

vulnerability detection tools. It is an open-source web application with thousands of test cases,

each corresponding to specific CWEs, suitable for testing SAST, DAST, and IAST tools. The

benchmark ensures that all vulnerabilities are exploitable, providing a fair and accurate

evaluation of these tools' accuracy, coverage, and speed.

D3.1: AI-driven self-testing and automatic error correction for robustness 39

The benchmark comprises both positive and negative test cases. Each case, including the

negative ones, encompasses functionalities that could potentially be vulnerable, such as

command execution or SQL queries. In negative tests, these potentially risky functionalities are

designed so that they cannot receive user input, thus rendering them non-exploitable.

Conversely, in positive tests, user input can interact with these vulnerable functionalities,

making the vulnerabilities exploitable. This design allows for a comprehensive assessment of

how security tools handle both secure and vulnerable code scenarios.

The typical test case consists of the following parts:

- GET or POST request handler, which extracts the parameters from the request and

passes it to the doSomething function. The result of the doSomething function is passed

to the vulnerable code.

- The doSomething function performs some simple or complex operations with the input

parameters, resulting that the input parameter may be the part of the output.

So, the vulnerability detection tool should detect the vulnerable functionality correctly and

should be able to follow the functionality of the doSomething function.

In the following we show an example test case from the benchmark:

/**

* OWASP Benchmark Project v1.2

...

*/

package org.owasp.benchmark.testcode;

...

@WebServlet(value = "/cmdi-01/BenchmarkTest01609")

public class BenchmarkTest01609 extends HttpServlet {

 private static final long serialVersionUID = 1L;

...

 @Override

 public void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 String[] values = request.getParameterValues("BenchmarkTest01609");

 String param;

 if (values != null && values.length > 0) param = values[0];

 else param = "";

 String bar = new Test().doSomething(request, param);

 String cmd = "";

 String osName = System.getProperty("os.name");

 if (osName.indexOf("Windows") != -1) {

 cmd = org.owasp.benchmark.helpers.Utils.getOSCommandString("echo");

 }

D3.1: AI-driven self-testing and automatic error correction for robustness 40

 String[] argsEnv = {"Foo=bar"};

 Runtime r = Runtime.getRuntime();

 try {

 Process p =

 r.exec(cmd + bar, argsEnv, new

java.io.File(System.getProperty("user.dir")));

 org.owasp.benchmark.helpers.Utils.printOSCommandResults(p, response);

 } catch (IOException e) {

 System.out.println("Problem executing cmdi - TestCase");

 response.getWriter()

.println(org.owasp.esapi.ESAPI.encoder().encodeForHTML(e.getMessage()));

 return;

 }

 } // end doPost

 private class Test {

 public String doSomething(HttpServletRequest request, String param)

 throws ServletException, IOException {

 String bar = "";

 if (param != null) {

 java.util.List<String> valuesList = new

java.util.ArrayList<String>();

 valuesList.add("safe");

 valuesList.add(param);

 valuesList.add("moresafe");

 valuesList.remove(0); // remove the 1st safe value

 bar = valuesList.get(0); // get the param value

 }

 return bar;

 }

 } // end innerclass Test

} // end DataflowThruInnerClass

In the above example the doSomething function returns the received param, which contains the

user data. This is because the code inside the if block adds param to a list, removes the first

element of the list (which was "safe"), and then assigns bar the value of the new first element

in the list, which is param. Since the command execution directly adds the return value of the

doSomething to the executed command name, the command injection is exploitable.

We chose this benchmark for evaluation because all its vulnerable scenarios are susceptible to

exploitation. This characteristic made it ideal for our analysis. Specifically, we focused on the

command injection test cases to assess the test generation capabilities of the LLMs, as the

exploitation in these cases is distinctly observable.

D3.1: AI-driven self-testing and automatic error correction for robustness 41

The helper function used by all the test cases (printOSCommandResults) printed the result of

the command execution to the standard out. It made the verification of the exploitation very

simple, since we had to print out with the command injection, which can be checked easily, but

will be printed only in case of a successful exploitation. From the lot of possible solutions, we

chose to store a simple text file in the working directory of the server, which contained

“abcd1234”. The command injection string can be some form of printing out the content of the

file, for example ‘; cat hack.txt"’.

Throughout the evaluation of test generation, we deliberately avoided specifying the exact

means of vulnerability exploitation. Our approach focused on issuing precise instructions on

the desired results of the exploitation, thereby facilitating its verification. The test was initiated

using the following prompt:

Your task is to create Mockito requests to properly call the vulnerable function to test the command injection. You have to

execute the "cat hack.txt" function as an injected command. At the end of the test check that the response contains the

"abcd1234" string, which indicates that the command is executed.

Do not write an explanation, just give the source code. Use the following example structure to generate the unit test:

<example test structure>

We used the following example test case:

import static org.mockito.Mockito.*.

import static org.junit.Assert.assertTrue;

import org.junit.Before;

import org.junit.Test;

import org.mockito.InjectMocks;

import org.mockito.Mock;

import org.mockito.Mockito;

import org.mockito.MockitoAnnotations;

import org.owasp.benchmark.testcode.BenchmarkTest01517;

import javax.servlet.http.*;

import java.io.StringWriter;

import java.io.PrintWriter;

public class BenchmarkTest01517Test {

 @InjectMocks

 BenchmarkTest01517 servlet;

 @Mock

 HttpServletRequest request;

 @Mock

 HttpServletResponse response;

 @Before

 public void setUp() {

 MockitoAnnotations.initMocks(this);

 }

D3.1: AI-driven self-testing and automatic error correction for robustness 42

 @Test

 public void testDoPost() throws Exception {

 String param = "; cat hack.txt"; // simulate command injection attempt

 StringWriter stringWriter = new StringWriter();

 PrintWriter writer = new PrintWriter(stringWriter);

 when(response.getWriter()).thenReturn(writer);

 servlet.doPost(request, response);

 writer.flush();

 String responseString = stringWriter.toString();

 assertTrue(responseString.contains("abcd1234")); // Check if the response

contains the expected string

 }

}

Throughout the evaluation of test generation, we encountered a few manageable issues that can

be addressed through postprocessing. Firstly, despite our requirement for code-only

submissions, there were instances where a brief explanation preceded the actual code. Secondly,

while most code submissions were correctly enclosed within three apostrophes, occasionally,

various types of apostrophes were utilized instead.

For the AI to generate a valid test case targeting a genuinely vulnerable piece of code, it needed

to overcome two challenges. The first challenge was to create an executable test, and the second

was to generate user input that could potentially exploit the vulnerability. Considering that

exploiting the vulnerability lay outside our evaluation scope — as it would require extensive

knowledge beyond the vulnerable Java file, like the source of utility functions in the benchmark

— we aimed to simplify the exploitation process. We provided a default user input ('; cat

hack.txt'), which serves as an effective exploit string in most scenarios. In cases where this

default input failed to produce a successful test, we automatically attempted the following

alternative inputs as well.:

"cat hack.txt"

"FOO=cat hack.txt"

The OWASP Java benchmark contained 92 vulnerable cases and 103 non vulnerable cases for

command injection. We sent all these tests to various LLMs without specifying whether it is

vulnerable or not, using the prompt and template we described above. Because the successful

test generation (vulnerability exploitation) can be considered as vulnerability detection, we

calculated the True Positive Rate (TPR) for each model. The TPR value is defined by the

OWASP benchmark True Positive / (True Positive + False Negative), which is also called as

recall value4.

4 https://en.wikipedia.org/wiki/Precision_and_recall

https://en.wikipedia.org/wiki/Precision_and_recall

D3.1: AI-driven self-testing and automatic error correction for robustness 43

Since we accepted only the exploited vulnerability as a successful test, the number of false

positive cases (when a non-vulnerable test is marked as vulnerable) was zero, so the False

Positive Rate was also 0.

Table 11: Test generation results

Model TP TN FP FN TPR

gpt 3.5-turbo 47 103 0 45 0.51

gpt 4 65 103 0 27 0.706

gpt-4-1106-preview

(gpt4-turbo)
46 103 0 46 0.5

2.4 AI4FIX Communication Interfaces

This subsection describes the JSON interoperability interface between AI4FIX and AI4VULN

and sharing the information with AI4COLLAB (using Kafka).

Using this JSON structure, AI4VULN can share its output (found potential vulnerabilities) with

AI4FIX to generate fixes and relevant tests.

An example of the JSON format is the following:

[

 {

 "id": "00001",

 "name": "EI_EXPOSE_REP2",

 "explanation": "...",

 "tags": "CWE-XXXX",

 "items": [

 {

 "patches": [

 {

 "path": "patch_1_EI_EXPOSE_REP2_24_24_34_51.diff",

 "score": 9.962368049953128,

 "explanation": "Repair with clone"

 },

 {

 "path": "patch_2_EI_EXPOSE_REP2_24_24_34_51.diff",

 "score": 9.920913240350998,

 "explanation": "Repair with Arrays.copyOf"

 }

],

 "textRange": {

 "endLine": 24,

 "endColumn": 50,

 "startColumn": 33,

 "startLine": 24

 }

 },

 {

 "patches": [

 {

D3.1: AI-driven self-testing and automatic error correction for robustness 44

 "path": "patch_3_EI_EXPOSE_REP2_29_29_36_55.diff",

 "score": 9.962787573897263,

 "explanation": "Repair with clone"

 },

 {

 "path": "patch_4_EI_EXPOSE_REP2_29_29_36_55.diff",

 "score": 9.918276408046792,

 "explanation": "Repair with Arrays.copyOf"

 }

],

 "textRange": {

 "endLine": 29,

 "endColumn": 54,

 "startColumn": 35,

 "startLine": 29

 }

 }

]

 }

]

2.5 AI4FIX Installation and User Guide

This subsection is dedicated to guiding users through the process of deploying the AI4FIX

plugin for Visual Studio Code (VSCode).

The source code for the AI4FIX VSCode plugin is publicly available and can be accessed at

the following URL:

https://github.com/ai4cyber-slab/ai4fix/tree/main/vscode-plugin

2.5.1 Installing dependencies

To set up the required environment for our project, it is essential to install all dependencies.

This can be efficiently achieved by using the Node Package Manager (npm). Execute the

following command in your terminal or command prompt:

npm install

This command will automatically download and install all the dependencies listed in the

'package.json' file of the project, ensuring that all necessary modules and libraries are available

for the application to run smoothly.

2.5.2 Packaging, publishing

For those looking to test an extension on a local installation of Visual Studio Code (VSCode),

an essential step is to utilize the Visual Studio Code Extension (vsce) package manager. This

tool is pivotal for packaging and publishing VSCode extensions. To install the vsce package

manager globally on your system, use the following command in your terminal or command

prompt:

npm install -g vsce

This command will install the vsce package manager globally (-g flag), making it accessible

from any directory on your system. This installation allows you to easily package your VSCode

https://github.com/ai4cyber-slab/ai4fix/tree/main/vscode-plugin

D3.1: AI-driven self-testing and automatic error correction for robustness 45

extension, enabling local testing and preparation for eventual publishing to the Visual Studio

Code Marketplace.

2.5.3 Generate .vsix file:

The .vsix file format plays a crucial role in distributing Visual Studio Code (VSCode) plugins.

It is particularly useful for sharing your plugin privately with others who may not have access

to the Visual Studio Code Marketplace or for testing purposes.

Steps to Create a .vsix File

- Navigate to the Extension's Root Folder: Start by opening your terminal or command

prompt and navigating to the root folder of your VSCode plugin. You can do this

using the cd (change directory) command. For example:

$ cd path/to/vscode-plugin

- Package the Plugin: Once in the root folder of the extension, run the vsce package

command. This command compiles your extension into a .vsix file:

$ vsce package
aifix4seccode-vscode-x.y.z.vsix generated

Upon successful execution, a file named aifix4seccode-vscode-x.y.z.vsix will be

generated, where x.y.z denotes the version of the plugin.

When releasing a new version of your plugin, it is important to update the version number in

the package.json file at the top of your project. The version numbering follows the semantic

versioning pattern:

- Major Version (x): Increment this number for major changes that may not be

backward compatible.

- Minor Version (y): Update this for minor changes that introduce new features but are

backward compatible.

- Patch Version (z): This is for small, backward-compatible bug fixes.

To install the .vsix file into Visual Studio Code, use the following command in your terminal

or command prompt, replacing x.y.z with the actual version number of your plugin:

code --install-extension aifix4seccode-vscode-x.y.z

2.5.4 Example of usage on a demo project

Before using the AI4FIX VSCode plugin on a project, it is crucial to configure the extension

settings properly. This ensures that the plugin interacts correctly with your development

environment and tools. Key configuration parameters include:

- Executable Parameters: Specifies the analyzer tool’s executable parameters. (e.g.:

java -jar Main.jar)

- Executable Path: Specifies the analyzer tool’s folder where the executable (.jar, .exe,

…) is located.

- Use Diff Mode: Change the mode of showing patches in the editor.

D3.1: AI-driven self-testing and automatic error correction for robustness 46

Diff mode options:

- view Diffs (default): Choosing a fix will show a side-to-side diff view of the original

content and the content that the fix would give.

- view Patch files: Choosing a fix will show the patch file’s content of the fix.

2.5.5 Example project

To get a hands-on feel for how AI4FIX works, we recommend using the test-project.zip. This

demo project is designed to help you familiarize yourself with the plugin's functionality, such

as analyzing code, identifying issues, and applying patches.

2.5.6 Open-source repository

The code of AI4FIX will be released into this repository:

https://github.com/ai4cyber-slab/ai4fix

2.6 AI4FIX Unit Testing

This subsection provides the plans for the unit tests of AI4FIX, which will be executed on the

final version of the tool. The results will be presented in D3.3.

Table 12: System test case AI4FIX_001

Test Case

ID

AI4FIX_001 Component AI4FIX

Req ID SR-003 Priority Medium

Description We measure the accuracy of generated patches: TP, FP, TN, FN.

Tested by SLAB

Pre-

condition(s)

Dataset for testing: including false positives, negatives, developers

Test steps

1 Run AI4FIX with multiple models on the test dataset

2 Evaluate the results with human assessor

3 Measure the number of correctly/incorrectly generated patches.

Input data Dataset for testing: including false positives, negatives.

Result Step 1 result

The evidence will be the generated patches.

Step 2 result

Human assessment on generated patches (accept/decline + reasoning)

Step 3 result

Statistics from the experiment determine the most successful model.

Test Case

Result

Achieved /Not achieved

https://github.com/ai4cyber-slab/ai4fix

D3.1: AI-driven self-testing and automatic error correction for robustness 47

Table 13: System test case AI4FIX_002

Test Case

ID

AI4FIX_002 Component AI4FIX

Req ID SR-003, SR-004 Priority High

Description Human assessment on generated patches (accept/decline + reasoning)

Tested by SLAB

Pre-

condition(s)

AI4FIX_001 test

Test steps

1 Run AI4FIX_001 test

2 Evaluate with developers Step 2 of AI4FIX_001 test filtered to true positive

results

3 Evaluate results, create statistics

Input data Dataset for testing: including true positives of generated patches.

Results expected to be around 80%

Result Can be organized to be part of AI4FIX_001 testing activities

Test Case

Result

Achieved /Not achieved

Table 14: System test case AI4FIX_003

Test Case

ID

AI4FIX_003 Component AI4FIX

Req ID SR-003, SR-004 Priority Low

Description Measuring patch and test generation time

Tested by SLAB

Pre-

condition(s)

Dataset for testing

Test steps

1 Run AI4FIX on the test dataset

2 Measure the time required for generating patches and tests for multiple

models

3 Evaluate results

Input data Dataset for testing filtered for true positives from AI4FIX_001 tests

Result Can be organized to be part of AI4FIX_001 testing activities.

The result is expected to be in the realms of a few minutes for 10k LOC.

D3.1: AI-driven self-testing and automatic error correction for robustness 48

Test Case

Result

Achieved /Not achieved

Table 15: System test case AI4FIX_004

Test Case ID AI4FIX_004 Component AI4FIX

Req ID SR-004 Priority Low

Description Compare test coverage before and after running AI4FIX

Tested by SLAB

Pre-

condition(s)

Dataset for testing

Test steps

1 Run AI4FIX on the test dataset

2 Run coverage analysis before patching

3 Run coverage analysis after patching

4 Evaluate results

Input data Dataset for testing: including false positives

Result The amount of successfully generated tests is expected to be around 80% of the

generated patches (true positives).

Test Case

Result

Achieved /Not achieved

Table 16: Integration test case AI4FIX_005

Test Case

ID

AI4FIX_005 Component AI4FIX

Req ID SR-003 Priority Medium

Description Integration of AI4FIX with AI4VULN.

Tested by FEA, SLAB

Pre-

condition(s)

Completing the integration between AI4FIX and AI4VULN.

Test steps

1 We run AI4VULN on its regression tests and on open-source software

2 We evaluate how AI4FIX uses the output of AI4VULN

3 We validate the generated path of AI4FIX

Input data Regression tests and open-source software

Result We can validate that the integration is correct

D3.1: AI-driven self-testing and automatic error correction for robustness 49

Test Case

Result

Achieved /Not achieved

D3.1: AI-driven self-testing and automatic error correction for robustness 50

3 AI4VULN Architectural Design & Implementation – Initial

Version

The AI4VULN system is based on a symbolic execution engine for the Java language. The input

for the Executor is a Java project in which we detect runtime errors, such as

NullPointerExceptions, ClassCastExceptions, and so on. The output of the symbolic executor

includes a list of these exceptions and the complete execution path (stack trace) leading to each

exception.

In the following sections, we provide an introduction on symbolic execution, which we continue

with the discussion of the work done so far.

3.1 AI4VULN – Symbolic execution-based vulnerability detection

3.1.1 State of the Art Analysis

The idea of symbolic execution was introduced in the 1970s as an elegant and powerful method

for software proving, validation, and test generation. In 1976, King introduced the fundamentals

of symbolic execution along with the presentation of the EFFIGY system [45]. EFFIGY is one

of the first symbolic executor engines. It is written for PL/I programs and only handles integer

variables symbolically.

Already at this time, a wide variety of symbolic executor engines were being developed [46],

[47], even though the computing power was not yet ready for the challenges, such as the

explosion of execution branches or the simulation of the environment of the program.

The evolution of symbolic executors has been defined by the steps taken to overcome these

challenges. Various hybrid solutions, machine learning-based methods have been developed.

One example is the mixture of concrete and symbolic execution which is called concolic

execution or dynamic symbolic execution. The DART (Directed Automate Random Testing)

system introduced by Godefroid et al. [48] was the first to suggest this approach. It performs a

directed search in the symbolic execution tree through the iterated executions of the investigated

software. The process starts with random input values, then during each execution information

is collected about the symbolic variables to produce input data that would force the next

execution on a new path. CUTE and jCUTE are also concolic testing systems for C and Java

[49], [50]. Like the DART system, they collect information about symbolic constraints to

produce input data, but they are extended with the capability of handling multithreading. If the

constraint solver fails to satisfy a complex expression, the constraints are simplified by

replacing some symbolic variables with concrete values. jCUTE can generate JUnit tests for

sequential software.

Another technique that is often used is some kind of heuristic for choosing between execution

paths. Such techniques may aim to maximize coverage or to find the branches most likely to

fail at runtime the fastest. Such techniques can be found in modern, widely used symbolic

executors, such as KLEE [51], Java PathFinder and JDART [52].

KLEE is based on the LLVM assembly language and functions as a virtual machine. It

powerfully handles environmentally intensive programs, for example by setting up a symbolic

filesystem or by simulating faulty system calls. Because it is such an effective tool, KLEE is

the basis for countless studies on symbolic implementation. For example, there is a novel

regression learning-based search strategy called LEARCH [53] which was implemented on

KLEE. LEARCH effectively explores and selects promising states for symbolic execution, thus

D3.1: AI-driven self-testing and automatic error correction for robustness 51

addressing the path explosion problem. It uses an iterative learning process using the data

extracted from the symbolic execution of the program and generates high-quality, diverse tests.

Like KLEE, the Java PathFinder (JPF) [54] tool also behaves like a virtual machine and

executes the Java bytecode in a special way. JPF is developed at the NASA Ames Research

Center for verifying and checking NASA projects. It has an extension, called Symbolic

PathFinder (SPF) [55], for performing symbolic execution. SPF supports concolic execution

and can be customized with several constraint solvers. One of them is the CORAL solver [56],

which handles complex mathematical functions, making it effective in scientific domains.

Two relatively recent surveys on the subject of Symbolic Execution are the work of Cadar and

Sen [51] which was presented in 2013, and the detailed paper of Baldoni et al. from 2016 [57].

These provide a more detailed overview of the current state of symbolic execution.

3.1.1.1 Exception handling

Since our goal in symbolic execution is to detect errors at runtime, it is important to properly

represent Java exception handling during execution. Representing exception handling in CFG

is not a trivial task. Several articles deal with it.

According to Amighi et al., the stack-based nature of the Java virtual machine (JVM) makes it

difficult to determine explicitly thrown exceptions, making it hard to decide which handler is

being controlled (if any). Implicit exception throwing makes it even harder to determine these

[58].

In their work, they have constructed an algorithm that generates a correct control flow graph

(CFG) from Java bytecode (JBC), which has been mathematically proven. This means that the

CFG they constructed has all the properties of the original source code.

As a starting point, they used the stackless intermediate representation language BIR (Bytecode

Intermediate Representation), a transformation of JBC, invented by Demange et al. [59].

The BIR model places assertions in front of all instructions that can throw implicit exceptions.

This makes it easier to take implicit exceptions into account.

Unfortunately, their implementation was not available on the internet, so we could not compare

it with our flow graphs.

Phan et al. presented an end-to-end model for solving software defect prediction [60]. They

generate the CFG of code from the compiled assembly instructions. They apply multi-view,

multi-layer directed graph-based convolutional neural networks (DGCNNs) to learn semantic

features. They tested their software on four datasets from CodeChef, a programming contest

site. They noticed that using the CFG instead of Abstract Syntax Tree (AST) of a program as

input for the DGCNNs increases accuracy. They claim their solution can scale well with larger

projects. However, they did not test it on more significant projects written in C.

3.1.2 Background

3.1.2.1 Symbolic Execution

During regular execution, the variables of the program have concrete values, meaning that the

program follows a specific executional path determined by these values. The basic idea of

symbolic execution is that the program is executed on symbolic values instead of concrete

values. This execution cannot be considered a real execution, it only means an execution within

a synthetic environment, by a static analyzer. When the exact value of a variable cannot be

decided (because, for example, it is a user input or method parameter), a symbolic value is

D3.1: AI-driven self-testing and automatic error correction for robustness 52

assigned to it. A symbolic variable can contain multiple concrete values that are allowed for its

type, for example, a symbolic integer can take arbitrary values within the range of integer type.

The possible values of symbolic variables can be bound with constraints. These constraints are

usually derived from conditional statements or assignments. If a statement contains symbolic

variables, the whole statement will be symbolic, and this applies for logical expressions as well.

A symbolic Boolean can either be true or false, therefore, the symbolic engine will continue to

execute both the true and false branches of a symbolic conditional statement. This means that

theoretically every possible executional path will be explored, and hidden runtime exceptions

can be detected.

The tree built up from the executional paths is called the symbolic execution tree. An example

is presented in Figure 7. This is a directed, acyclic graph where each node represents a state of

the program. Some branches of the symbolic execution tree are unreachable even with symbolic

values because the concatenation of the conditional statements leading to them are unsatisfiable.

Symbolic engines can cut off these unnecessary branches by maintaining and checking the

satisfiability of a path condition (PC). The path condition is a quantifier-free logical formula

over the symbolic variables. It contains constraints derived from the conditional statements that

must be satisfied to reach the investigated executional state. Symbolic engines use constraint

solver algorithms to check the satisfiability of the path condition and to decrease the number of

possible branches when a conditional statement is reached. On the contrary, if a path condition

is satisfiable, assigning the solutions to the symbolic variables as input values will direct the

concrete execution to the state of that PC. Therefore, for example, symbolic execution can be a

tool for test input generation.

The following Java code in Figure 6 shows an example function which decides if the three 2-

dimensional points given as parameters can form a triangle. There are two erroneous return

values: the function returns with -1 if the three points are on a line, and with 1 if the three points

are not on one line but the triangle inequality is not satisfied anyway. The return value is 0 if a

proper triangle can be composed from the three points.

Figure 6: isTriangleValid function

The implementation of the euclideanDistance function is not present, but as its name

suggests it calculates the distance between two 2-dimensional points with the classic Euclidean

formula. Suppose that the symbolic execution was started with this function, so the actual value

of parameter p1, p2, and p3 are unknown, therefore, they must be handled symbolically. This

D3.1: AI-driven self-testing and automatic error correction for robustness 53

means that the two data members (coordinate x and y) of each Point are symbolic too, so they

can hold any value from the domain of their type. Therefore, the value returned by the

euclideanDistance function can be symbolic, making local variables a, b, and c also

symbolic variables. Theoretically, we have more information about these variables than the

parameters of isTriangleValid because the symbolic engine executes their initialization.

Nonlinear constraints can be derived from the Euclidean formula and then appended to the path

condition, however, it is clear that doing it programmatically is not a trivial task. Figure 7 shows

the symbolic execution tree built up during the execution of the sample code. Each conditional

statement at line 7 and 11 can be split up to three sub-expressions, all of them containing

symbolic variables. The short circuit evaluation gives an explanation as to why the two if

statements create three-three branching points during the execution, whilst having symbolic

variables in the conditions means that both the true and false outcomes of each sub-expression

have to be investigated.

Figure 7: Symbolic execution tree

Path conditions are not presented in Figure 7 because - as previously mentioned - the constraints

derived from the initialization are non-linear. We assume that symbolic engines will not build

D3.1: AI-driven self-testing and automatic error correction for robustness 54

up and solve constraints like that on their own, mostly because they treat the sqrt function

grammatically with symbolic variables and an indefinite number of loops instead of using its

mathematical meaning. However, a developer is able to detect straightaway the three

unreachable states, namely the three return 1 branches (colored with yellow). If three points

given on the two-dimensional plane are not arranged on a line, they definitely form a triangle.

Therefore, the if condition in line 7 is unnecessary, mathematically infeasible, making the true

branches of each sub-expression unreachable. If an unreachable program state is discovered

through unsatisfiable path conditions, the state and the sub-tree derived from it should be pruned

from the symbolic execution tree. Not only do we avoid needless computations on that path,

but possible false-positive warnings will also be eliminated.

This example gives a quick insight into how the symbolic execution is performed in the classical

way. Whilst it is a very powerful tool for detecting runtime failures, it has several limitations.

One of them that already occurred in the sample code is related to constraint solving. As the

example shows, it is not a trivial task to find an efficient solution to reveal unreachable program

states. Another major drawback is path explosion. The number of possible executional paths

grows with the number of conditional statements almost exponentially. The scenario is even

worse with switch statements and loops containing symbolic conditions. Since it is not known

in advance how many iterations must be done in a loop, symbolic engines must make a guess

or unroll the cycle until a limitation is reached, otherwise an infinite number of branches is

created. Managing different kinds of features in programming languages symbolically, like

static initialization in Java, also gives room for challenges. Simulating the environment of a

program (e.g., system calls) in a purely symbolic way can also be a problem. For a more detailed

summarization of symbolic execution and its difficulties see the survey of Baldoni et al. [57].

3.1.2.2 RTEHunter

In this section, we introduce the symbolic execution tool that we use for vulnerability detection.

RTEHunter (abbreviation of RunTimeException Hunter) is a Java symbolic execution engine.

It is part of the SourceMeter project, which is developed at FrontEndART Software LTD.

SourceMeter [61] analyzes C/C++, Java, C#, Python, and RPG projects. It calculates source

code metrics, detects code clones, and finds coding rule violations in the source code.

RTEHunter is one of the static analyzers of the SourceMeter Java toolchain. It is designed to

detect runtime exceptions in Java source code without executing the application in a real-life

environment. Currently it can detect four kinds of common failures:

- NullPointerException,

- ArrayIndexOutOfBoundsException,

- NegativeArraySizeException, and

- DivideByZeroException.

RTEHunter performs the analysis by calling the symbolic execution for each method in the

program separately. For big systems, this approach is usually a better solution than only starting

the execution from the main() method [62], [63].

Starting the execution at the entry point of the real-life execution seems like a natural and

convenient idea, however the practical limitations mentioned in the previous section would be

reached very soon, leaving many parts of the code unexplored.

RTEHunter limits the number of states (nodes) in the symbolic execution tree and the depth of

the execution tree as well.

D3.1: AI-driven self-testing and automatic error correction for robustness 55

3.1.2.3 ASG, CFG

RTEHunter uses the Abstract Semantic Graph (ASG) [64] of the program, which is constructed

by the analyzer of SourceMeter. The ASG is a language-dependent representation of the source

code that contains every detail of the source code in an internal graph representation. It is similar

to an Abstract Syntax Tree but provides additional semantic information. First, RTEHunter

builds a language-independent Control Flow Graph (CFG) [65] based on the ASG, and

symbolic execution works on this CFG. In a CFG, each node represents a basic block. Basic

blocks are the abstraction of straight-line program parts which are guaranteed to be executed

sequentially. A jump in the code, like a conditional statement or a return statement, terminates

the current basic block, and the outgoing edges connect to the basic blocks that are the targets

of that jump. BasicBlock 5 in Figure 8 shows an example for a conditional jump with a true and

false outgoing edge. Since RTEHunter performs symbolic execution on each method of the

program, a separate control flow graph will be created for all methods. Each CFG for a method

contains exactly one entry block and exactly one exit block, even if there are more return

statements in a method (see Figure 8). The control can only enter and leave the CFG of a method

through these two blocks, making them useful for handling function calls and returns.

The euclideanDistance function has a different control flow graph shown on the top of the

figure. It is reached through call edges, however, this CFG is only represented with the entry

and exit blocks without real content. Inside each basic block, we can find the ASG nodes that

are visited in a sequential order. As previously mentioned, each method invocation creates a

new basic block, which is why the first three initialization lines of the isTriangleValid

method appear in four basic blocks (BB 16, 3, 4 and 5). From BasicBlock 5, a new basic block

starts at each conditional sub-expression. Note that BasicBlock 6 represents the whole

conditional statement at line 5, whilst BasicBlock 10 represents the if statement of line 7. BB 6

and BB 10 are not necessary, they are collector basic blocks introduced to make handling the

expressions that contain multiple sub-expressions easier.

There are also true and false out-edges of these basic blocks, but the RTEHunter is aware of the

short circuit evaluation so, for example, if the control reaches BB 6 from the true edge of BB

5, there will be no branching in BB 6, only the true edge will be continued. It can be seen from

the given control flow graph that RTEHunter performs an interprocedural analysis. The

symbolic engine handles method calls by continuing the symbolic execution in the called

methods and then returning to the original function as during normal execution.

Built-in or third-party Java functions are also executed, however any warning found in them

will be filtered out from the final output.

D3.1: AI-driven self-testing and automatic error correction for robustness 56

Figure 8: Control Flow Graph (CFG) of the isTriangleValid function

D3.1: AI-driven self-testing and automatic error correction for robustness 57

Figure 9 shows the symbolic execution tree constructed by RTEHunter. Some basic blocks

appear multiple times, but each of them represents a different program state.

Figure 9: Symbolic execution tree

3.1.2.4 Constraint solvers

As mentioned in the previous chapters, in symbolic execution, so-called path conditions are

created along each execution path. Checking their satisfiability and cutting off redundant,

unavailable execution paths is a crucial task during this simulated execution.

3.1.3 Introduction

Many mathematical problem domains can be handled with computer programs, known as

solvers. The inputs to these solvers can be formally described, and algorithms are available to

calculate the corresponding outputs. Designing a solver involves formalizing the inputs and

implementing an algorithm.

D3.1: AI-driven self-testing and automatic error correction for robustness 58

It can be observed that multiple solvers can be designed for a single mathematical problem. For

popular problems, a simple internet search can yield numerous implementations/solvers.

One of the earliest mathematical problems for which solvers were developed is linear

programming [66]. LP solvers are designed to solve linear programming problems, where the

input consists of a linear function to be optimized and a finite set of linear constraints. The

choice of algorithm and its precise implementation are crucial in this case. The simplex method,

developed by Dantzig in the 1950s [67], is one of the most important algorithms and is often

listed among the top 10 algorithms [68]. While the simplex method performs well in practice,

there are theoretical cases where it can be slow. However, this does not affect applications, as

simplex-based LP solvers perform very well. Internal point methods have also been developed

based on theoretical considerations, offering alternatives to the simplex method.

During the development of theoretical computer science, the class NP was introduced [69]. This

class contains languages, and a language is a mathematical description of a decision problem.

In decision problems, a single bit needs to be computed: either accept or reject the input. The

language is the set of inputs that need to be accepted. The NP class is not the focus of this thesis,

so its definition is not elaborated on. Only the necessary theoretical background is provided.

There is often a significant relationship between two languages (decision problems, i.e.,

true/false questions). One language may be capable of formulating questions in the other. That

is, a question associated with language L_1 can be reformulated for a problem in language L_2.

If the complexity/time required for reformulation is negligible, then the L_1 problem has been

reduced to the L_2 language.

A significant result in theoretical computer science is the identification of universal problems

in NP. These problems can formulate all problems in NP (every language in NP is reducible to

them). The celebrated Cook-Levin theorem [70], [71] states that the SAT language in NP is one

such universal problem.

The SAT language involves the decision problem of determining the satisfiability of a

propositional logic formula in conjunctive normal form (CNF) [72]. The formalization of a

CNF is straightforward, as it consists of a set/sequence of clauses. These clauses must all be

satisfied, meaning they are connected by logical 'OR' (or 'AND') operations. A clause is a

disjunction of variables and negated variables. Variables/negated variables collectively are

called literals. A clause is satisfied if at least one literal evaluates to true. While it is a simple

logical problem with easily describable input, a trivial algorithm can be designed. The variables

(let their number be n) can be evaluated in true/false logical values in a finite number of ways.

The total number of evaluations is 2^n. These can be enumerated, and the input can be evaluated

on each. The first assignment of values to variables that makes the input CNF true stops the

algorithm and leads to an accepting state. If all evaluations are tested without finding one that

makes the input CNF true, the algorithm stops with a rejection.

Naturally, the development of SMT solvers did not stop with this naïve algorithm [73]. The 2^n

possibilities are too many to check (which we must do if the input is unsatisfiable) therefore it

is not suitable for practical use. Typically, the number of logical variables is a few hundred or

even thousands. In such cases, the number of possibilities is too large even for the fastest

networked computers.

Numerous SAT solver algorithms have been developed. Similar to the simplex method, these

algorithms exhibit shortcomings in worst-case analysis, yet frequently demonstrate excellent

performance in practical applications. Ongoing advancements in SAT solvers involve the

D3.1: AI-driven self-testing and automatic error correction for robustness 59

refinement of heuristics and implementation techniques. Their performance is evaluated, for

example, in the form of world championships.

SAT solvers are gaining relevance in many practical scenarios. The Cook-Levin theorem states

that every NP problem can be efficiently reformulated as a SAT question. This includes, among

other things, the factorization problem necessary for breaking modern encryption. If we want

to factorize a specific number, for example, to determine the presence of a small prime divisor,

this question can be formulated as a CNF formula. The satisfiability of this formula expresses

the existence of the small prime divisor. This example illustrates how useful an SAT solver can

be.

Integrating a suitable logical solver into a system can make the system much more efficient.

This was a primary motivation for integrating a solver into RTEHunter. The integration process

consisted of several steps. First, we had to select the solver to be integrated. However, the

number of SAT solvers can be measured in the hundreds. There are numerous solvers for each

formula class. One of our selection criteria is that expressive ability of logical formulas should

be high. This could it easy for RTEHunter to formulate questions. Other aspects included, for

example, the solver's accuracy, speed and whether its code base was still maintained.

Our choice was SMT solvers [74]. Their expressive power surpass those of SAT solvers, and

they are widely used and developed.

3.1.3.1 SMT solvers

SMT (Satisfiability Modulo Theories) solvers are programs that decide the satisfiability of

formulas modulo theories. Modulo theories generalize the Boolean satisfiability problem. They

extend the Boolean satisfiability problem (SAT) to be interpreted within certain formal theories.

The name "modulo" arises from the interpretation of these expressions within a specific formal

theory. In first-order logic, these expressions are often written with equality, excluding

quantifiers, in a manner familiar to Boolean algebra. It is worth noting that SMT formulas can

describe SAT formulas, making the design of SMT solvers more challenging than SAT solvers.

Since SAT satisfiability is an NP-complete problem, SMT is also NP-hard. For many inputs,

satisfiability is undecidable, which means the solver might enter an infinite loop (programs

typically handle this with a timeout parameter, terminating after a specified runtime). After a

successful run, we obtain information about whether the machine can satisfy the system of

conditions we built.

These solvers are frequently used for verification, symbolic execution-based testing, and even

for proving program correctness [75], [76], [77].

3.1.3.2 SMT-LIBv2 language

Solvers have developed a language for encoding input and output, known as the SMT-LIBv2

Language. Figure 10 shows an SMT-LIBv2 fragment. "Code lines" written using this language

serve as the solver's input. Most solvers can obtain this input either by loading a file or by

entering it through the program's interface. The code lines, enclosed in parentheses, typically

include settings in the first lines, specifying the logic the solver should use to search for

solutions or whether it should generate models, among other options.

D3.1: AI-driven self-testing and automatic error correction for robustness 60

Figure 10: SMT-LIBv2 language

Next come the declarations, where variables and functions can be defined. These declarations

specify the inputs and outputs of functions. For example, a declaration could define a function

that takes two integer inputs and produces one integer output: (define-fun name (inputTypes)

outputType (body)). Following these definitions are the conditions the program attempts to

determine if they can be satisfied. If satisfiable, it returns "sat"; otherwise, it returns "unsat."

Additionally, in the case of a "sat" output, a model can be requested, providing a concrete

solution to the conditions.

It was mentioned earlier that satisfiability is NP-hard, so finding a solution within a reasonable

time frame is not guaranteed. Solvers handle this by providing a result if a time limit is set. If

the solver cannot find a solution within the specified time, a "timeout" result is returned, and

no model can be requested. The purpose of the timeout is to ensure the program terminates.

One interesting aspect compared to other languages is that operators are specified before the

variables/values on which the operation is to be performed. This allows for the construction of

more complex expressions, as shown in the accompanying image, using parentheses

appropriately.

3.1.3.3 Improvement of CFG generation

As part of the development of the symbolic executor, the ASG and CFG generator modules

were also tested. We wanted to achieve full support for Java 11 language elements.

3.1.3.3.1 Try-with-resources

Try-with-resources was a new feature of Java 11. This is a control structure for automatically

handling the resources we specify as the parameter of the try block. If an exception occurs

during the execution of the try block, the resources declared in the parentheses of the try-with-

resources statement are automatically closed. This is the main advantage of try-with-resources

– it ensures that resources are properly closed, even if an exception occurs.

Resources must implement the AutoCloseable interface. The close () method of the interface

handles resources to be closed appropriately.

D3.1: AI-driven self-testing and automatic error correction for robustness 61

Figure 11: Try-catch with multiple resources

Figure 11 shows an example usage of the try-with-resources, containing two AutoClosable

resources, r1 and r2. Regardless of whether an exception is thrown in the try block, their close

methods will be executed after the try block is executed. Figure 12 shows a simplified CFG that

was originally built from the Java code shown in Figure 11. Dashed lines represent method calls

(e.g., call to the close () methods at the end of the try block) and solid lines represent control

edges. The r1, r2 basic boxes represent the initialization of the two resources. However, these

basic boxes are not part of the control flow graph, the control cannot reach them starting from

the entry block. This has been corrected in Figure 13. The idea was to implement a new visitor

that connects the basic blocks of the new resources into the control flow before the try block.

The resources should also be connected to each other respecting the order in which they were

declared.

Both Figure 12 and Figure 13 also show a basic block with no edges from the entry block. This

is because this basic block represents the error handling, i.e., the catch branch. Every statement

in the try block that can throw an exception should be linked to this block as an incoming edge.

These edges are not shown in the figures. There will be a further literature review on the

exception handling representation.

Figure 12: Original CFG

D3.1: AI-driven self-testing and automatic error correction for robustness 62

Figure 13: Improved CFG with resource handling

3.1.4 Handling finally blocks

In Java, the final block is used in conjunction with a try block to define a set of statements that

will be executed regardless of whether an exception is thrown or not. The final block is part of

the exception handling mechanism and provides a way to ensure that certain code is always

executed, typically for cleanup purposes, regardless of whether an exception occurs.

Figure 14: Try-catch-finally construct

If a Java code includes a try-catch-finally construction with branching in the try block (like in

Figure 14), the CFG needs to appropriately represent the flow of control, including the handling

of the final block. Other branching structures are also possible, e.g., a throw statement, continue,

break or a return statement. The final block will always be executed, even on an explicit return

statement. RTEHunter, integrated with the constraint solver, was no longer able to handle these

branching cases well, so we improved it. Figure 15 shows the original representation of the

control flow. There is no final block between the block containing the return statement and the

exit block, which is a mistake. However, connecting to the existing finally block is no solution

either. How does the symbolic executor know whether to go to the code3 block or the exit block

after executing the final block? The solution we came up with is cloning the final blocks,

making them easier to read but also keeping the correctness of the execution flow. This can be

seen in Figure 16.

D3.1: AI-driven self-testing and automatic error correction for robustness 63

Figure 15: Original CFG for handling finally blocks

Figure 16: Improved handling of finally blocks

During the implementation of this feature, we had to pay attention to various aspects. For

example, duplication is not necessary if the same code block were executed from both input

branches after executing the final block. Nested try-catch-finally constructs and labels also

needed extra consideration.

3.1.5 Constraint solver integration

To make RTEHunter as efficient as possible in detecting run-time errors, we have integrated a

new state-of-the-art constraint solver. In this section, we discuss the measurements taken to

select the constraint solver and the challenges of integration.

3.1.5.1 Solver Comparison

The project began with research, exploring available solvers, searching for benchmarks on their

performance, and comparing them. The results are discussed in the following subsections.

D3.1: AI-driven self-testing and automatic error correction for robustness 64

Both paid and open-source solutions exist, but for the project, only freely available solvers with

open-source code were tested. During the solution process, even cases where only the solver

was used as a runnable program were tested, so the limitation that comes with paid programs,

typically not providing access to the source code, did not apply.

Accuracy, speed (for solving a demonstrably solvable task), and support for development were

crucial aspects for application purposes. After reviewing several programs and benchmarks, it

can be concluded that support is often discontinued, or new versions are infrequent in many

cases. The yices2 [78], for instance, performed well in many places a few years ago but has not

been updated since 2021. Several documents describe SMT solvers that no longer exist or have

fallen far behind in development. Many solution logics can be set for a given solution, and there

is no clear "winner."

During our research, we came across the SMT-COMP competition, which aims to compare

SMT solvers. The competition evaluates how quickly a solver solves a given problem set (less

time results in more points), and the accuracy, determining whether the response is correct

(higher accuracy rate earns more points).

Most solutions are either a major solver name or a modified version of it. As shown in Figure

17, in this task, Z3++ and one variant of Z3 were the winners in several "divisions." This is

possible because, in the SMT-LIB2 language, the solution logic can be specified, allowing a

program to achieve different results. Based on our own tests, we found CVC5 and Z3 to be the

most valuable, and their source code is publicly available. Both were tried during integration.

Ultimately, the decision was made in favor of Z3 because its build does not require a specific

environment, while CVC5 requires a Linux system capable of Linux-Windows cross-build

using MINGW.

D3.1: AI-driven self-testing and automatic error correction for robustness 65

Figure 17: Participants of an SMT solver competition

RTEHunter is developed using Microsoft Visual Studio on a Windows system, so it was

advantageous not to need to set up a new environment for building CVC5. Conceptually, we

tried using the compiled binary to see how usable the solution is, and based on initial tests, its

operation is similar to that of Z3. From this, we concluded that any program capable of

interpreting the SMT-LIB2 language could be used during integration.

3.1.5.2 Measurements and results

To select the best solver, we also carried out our own measurements. To do this, we had to

collect SMT-LIBv2 codes and run them to test the accuracy and speed of the solvers. The SMT-

LIBv2 codes were obtained from various online sources, benchmarks, and we created our own

test codes as well. Unfortunately, some of the online sources were faulty and did not meet the

formal language requirements. These faulty files did not pose a problem during measurements

because these consistently led to errors in each solver. We tested several SMT solvers, and

ultimately, Z3 was chosen. Most solvers were typically either very slow but accurate or very

fast but not capable of handling large problem sets. One notable example was exceptionally

fast, averaging "solutions" in less than 0.1 seconds. However, we got an answer in less than

10% of cases and in the remaining 90% the program timeouted, which is not acceptable for the

symbolic executor.

Two of the best-performing programs were CVC and Z3. We conducted various measurements

on these programs. It is essential to mention that we verified the output beforehand, but during

the measurements, none of the programs output anything to the screen. This helped filter out

differences in how each program displays solutions or models. In the case of Z3, we took

D3.1: AI-driven self-testing and automatic error correction for robustness 66

advantage of the convenience feature that eliminates the need to specify the logic (other

programs also allow skipping this step, but the behavior may change). The measurements are

summarized in Table 17.

Table 17: Results of the measurements

SMT solver 1 run, 1000 API

calls

1000 runs, 1-1 API

calls

Solver.exe

Z3 11.053 20.792 14.618

CVC 4.428 62.196 68.627

CVC ALL 4.442 65.876 58.34

CVC QF_UFLIA 4.146 72.195 57.242

z3/cvc Best 2.665943078 0.3342980256 0.2553719297

z3/cvc Worst 2.488293561 0.2879977838 0.2130065426

Best/Worst 1.071394115 1.160765966 1.198892422

At the beginning of each row in Table 17, you can see what was used for the solution

(program/logic), and the last 3 rows show the meaning of the numbers listed there. Z3 does not

expect logic, so it is never specified there. The choice could be narrowed down there as well,

but in online forums, it is often stated that it is "not customary" to use logic, and specifying it

is not trivial. For CVC, three types of invocations are visible: without specifying logic, with

ALL, and with a specific (randomly chosen) logic. In theory, there should be no difference

between ALL and without specifying logic, but CVC, if nothing is specified, signals to at least

provide ALL. However, the difference is evident in time. Best and worst represent the best and

worst times between Z3 and CVC, regardless of the logic used.

In the second and third columns, the mode of execution is visible, whether we solve one

problem 1000 times with the program or solve 1000 problems with it at once (the same problem,

only the number of runs differed, either separately or in one batch). In the third column, you

can see data for solving the entire set of 1000 problems, where we solved the problem with a

precompiled binary. All runtime is in seconds.

At first glance, based on the table, it is apparent that CVC5 significantly outperformed Z3

because it solved 1000 problems faster in one run, and there is a factor of 2.4-2.6 between the

runtime values. This is not an error; based on measurements, it was clear that CVC5 is faster

with a larger, more complex problem set. It is also visible that there is a difference when

choosing logic. Something different happens if nothing is specified, if everything is given, or if

we introduce a "limitation." The choice of solution logic was not based on anything specific;

we chose a solution logic that could solve the problem(s) because it could also be chosen so

that it could not handle the given problem set. Therefore, the choice was only roughly random,

with minimal directionality. In the second column, it is evident that if we have many small

problems, then Z3 performs significantly better, about 3 times faster than CVC. We found no

clear reason why loading CVC multiple times would cause such a significant difference. The

only thing we could think of during the research is what we mentioned earlier that CVC5

D3.1: AI-driven self-testing and automatic error correction for robustness 67

requires a system capable of Linux-Windows cross-build for its build, while Z3 can be natively

built with VS2019 (or later). Binary execution typically falls between the two runtimes. The

only difference occurred when we gave the solver a file without specifying the logic.

In Z3, there is a direct API call that solves the problem from SMT-LIBv2 code. Somehow,

string API calls are faster than directly written API calls. We did not find clear information

about this in an official description, but various forum claims suggest that Z3 converts API calls

to strings in the background, which would explain the runtime differences. For the solving of

1000 problems with one run and solving 1000 problems in 1000 runs, it solved them in 10.236

and 15.471 seconds, respectively, based on the table, which are better results than the previous

run.

3.1.6 Low-level integration challenges

3.1.6.1 Bit operations

In the Java language, it is possible to perform bitwise operations with primitive types, but not

in SMTLib2. In Java, bitwise operations are only defined for integers. The reason for this is

that, in order to perform the operation, the computer needs to represent the number as a

sequence of bits. Floating-point numbers are stored according to the IEEE-754 standard, where

the first bit represents the sign (0: positive, 1: negative), followed by 8 bits for the exponent,

and the remaining 23 bits for the mantissa. For example, 1.5 is represented as 0 - 01111111 -

10000000000000000000000 (separated by "-" as indicated earlier for the 1-8-23 bit blocks). In

this example, it is already evident that a bitwise shift operation would cause issues. Shifting the

exponent to the left by 2 would move the 1-bit to the sign's position.

In SMTLib2, bit vectors need to be handled separately. We can only apply bitwise operations

to this type, which in Java, we are accustomed to applying easily to integers. The following

code snippet allows us to create a bit vector named x_0 containing 32 bits: (declare-const
x_0 (_BitVec 32)). This type does not exist in the Java language; however, we need it

because bitwise operations cannot be performed differently in SMTLib2. Primarily, we will use

it by converting a previously created variable to a bit vector for operations with a variable like

((_int2bv 8) variable). With this, we can perform bitwise operations, such as bit shifting

or bitwise AND, as needed. Of course, in the example mentioned earlier, we only created an 8-

bit bit vector, which does not cover the entire integer range. This needs to be adjusted to Java

types.

When performing bitwise operations, it is crucial to ensure that the operations are carried out

on bit vectors of the same size. In SMTLib2, you cannot perform a bitwise OR operation on an

8-bit and a 16-bit bit vector. One solution is to create all bit vectors with the largest size possible,

ensuring that different sizes won't cause issues. However, this introduces a new problem. If we

had a byte type in Java, we would need to handle overflow properly to avoid the larger container

producing a result different from what would occur if the code were running in reality.

During conversion, one approach is to use an appropriate all-one vector during the conversion

process, eliminating the upper extra bits needed for SMTLib2 to perform the operation. This

helps address issues like overflow caused by a bitwise shift that might exceed the maximum

value the type can store.

During integration, some modifications were made to the existing solution, and some

completely new additions were introduced. The constraint expression class, which previously

stored type of information and could negate expressions, etc., was aligned with Java types.

D3.1: AI-driven self-testing and automatic error correction for robustness 68

However, with the introduction of bit vectors, a new type had to be created to handle this data.

The most straightforward solution was to create a new constructor where the "bitvector" field

was set to a default value of false, leaving the previous constructor(s) unchanged. This

ensures the proper functioning of the previous parts, and the change does not cause issues

because the bit vector type does not exist in Java or C++. It was strictly necessary for SMTLib

to enable bitwise operations (shift, bitwise AND, bitwise OR, etc.).

We have two types of operations: traditional bitwise operations (e.g., left shift) on bit vectors

and traditional operations that involve a bit vector on one side and a primitive number type on

the other side (e.g., adding a bit vector to n integer). Handling these cases occurs separately.

In cases where we perform traditional operations on bit vectors, we still need to convert

everything to the same type. It can be assumed that if we are using bit vectors for some reason,

we are not doing so just once. Therefore, it is preferable to convert all variables involved in the

operation to bit vectors.

This approach ensures consistency and avoids potential issues when dealing with mixed types.

If, for any reason, bit vectors are used, it is better to convert all variables to bit vectors in every

operation.

3.1.6.2 Remainder of division

RTEHunter was developed for analyzing Java programs, but the program itself is written in

C++. This posed challenges during integration. If we can pre-calculate operations, for instance,

when both sides of a given operation, such as division, involve numbers (not symbols), we

calculate it on the C++ side, and the symbolic solver only receives the computed value. This

alone wouldn't be problematic if the toolsets of the two programming languages were entirely

identical.

One frequently encountered difference between the two languages was the modulus operation.

In Java, the operation 12.3f % 3.2f is allowed. However, in C++, the % operator is not defined

for float and double types. It turned out that the modulus operation cannot be handled the same

way if a double or float appears on either side of the operation. Fortunately, in the C++

implementation, the math.h header provides the fmod(a, b) function, which behaves similarly

to % in Java, but implementation-wise, both cannot be handled identically. For this operation,

three different cases are considered: for integers, where it works the same as in Java; for real

numbers, where the mentioned difference between Java and C++ exists, and hence a separate

function must be used on the C++ side depending on whether a real number is present in the

operation; and the third case where a symbol is present on either side of the operation, which is

handled as a separate case everywhere.

3.1.7 Integration result

The integration of the Z3 solver has been completed, but testing and patching are still ongoing.

Testing is currently performed on 89 Java test classes, each with 3-4 (or more) false positive

(FP) and true positive (TP) errors. The results are reviewed one by one. We carry out minor

corrections if necessary. A manual review is essential, because, for example, thanks to the

improvements in RTEHunter, we have found an incorrectly categorized true positive runtime

error. Table 18 shows partial results of several ClassCastException and ArithmeticException

related tests. The last column shows how many of the errors were found by the original

RTEHunter before integration, and the second-to-last column shows the post-integration states.

In the case of false positive errors, the lower the number of hits, the better the results.

D3.1: AI-driven self-testing and automatic error correction for robustness 69

Table 18: Improvements in the regression tests

Test name Total number of bugs Improved

RTEHunter

Original

RTEHunter

ArithmeticExceptions1 FP 2 2 2

TP 7 3 2

ClassCastException01 FP 2 0 0

TP 2 1 0

ClassCastException02 FP 1 0 0

TP 1 0 0

ClassCastException03 FP 2 0 0

TP 2 1 0

ClassCastException04 FP 2 0 0

TP 1 1 0

ClassCastException05 FP 2 0 0

TP 2 2 0

ClassCastException06 FP 2 0 0

TP 1 1 0

ClassCastException07 FP 2 0 0

TP 2 2 0

ClassCastException08 FP 2 0 0

TP 2 2 0

We have highlighted in green the cells where full improvement has been achieved. The original

RTEHunter did a very poor job of detecting ClassCastExceptions, but, in most cases, this has

been completely fixed. We have highlighted in yellow those cells where there was no or only

partial improvement. For example, in the ArithmeticExceptions1 test, we still find the two false

positive errors. These are currently being corrected.

3.1.7.1 Example

In this section, we show the faulty test case as an example. In Figure 18, you can see that one

of the Integer to String casts was labeled a false positive because the else execution branch was

considered unavailable. However, the improved RTEHunter detected this false positive, so we

took a closer look at what could be wrong. We found that for given initial values i, j, the if

condition can never be true. We have fixed the condition as follows: (i-j % 2) == -1.

D3.1: AI-driven self-testing and automatic error correction for robustness 70

The investigation on this test case also provided feedback on our % operation implementation.

Figure 18: Faulty test case

3.2 AI-based vulnerability detection

The application of LLMs for vulnerability detection in code has been an area of significant

interest in recent literature. In "Technical Report: Evaluation of ChatGPT Model for

Vulnerability Detection," the authors evaluated the performance of ChatGPT and GPT-3 for

vulnerability detection tasks but found that the ChatGPT model performed no better than a

dummy classifier for both binary and multi-label classification tasks [79]. These findings

demonstrate the limitations of LLMs when it comes to vulnerability detection in real-world

datasets.

Moreover, "Large Language Models are Edge-Case Fuzzers: Testing Deep Learning Libraries

via FuzzGPT" explored the potential of LLMs for fuzzing deep learning libraries by proposing

FuzzGPT, a technique to prime LLMs to synthesize unusual programs for fuzzing [80]. The

authors demonstrated that FuzzGPT could substantially outperform TitanFuzz, detecting 76

bugs, with 49 already confirmed as previously unknown bugs, including 11 high-priority bugs

or security vulnerabilities [80]. This work highlights the potential of LLMs to be effectively

used for fuzzing when primed with the right techniques.

In contrast, "Detecting software vulnerabilities using Language Models" presented a

transformer-based vulnerability detection framework called VulDetect, which achieved an

accuracy of up to 92.65% in identifying vulnerable software code, outperforming other state-

of-the-art vulnerability detection techniques [81]. Additionally, "Predicting Vulnerability in

Large Codebases With Deep Code Representation" developed an AI-based system that uses

deep representation of Abstract Syntax Trees (ASTs) to identify and alert potential bugs during

the development process [82]. These studies showcase the potential of LLMs and other deep

learning techniques to detect and predict vulnerabilities in software code.

One significant advancement is the application of LLMs for formal software verification, as

described in a paper [83] that presents a method using LLMs trained on both natural language

and code. These models are capable of generating and repairing entire proofs, marking a

departure from traditional step-by-step or search-based verification methods. This approach

allows LLMs to analyze codebases and identify logical errors, potentially leading to the

discovery of vulnerabilities, and can be a valuable addition to current vulnerability detection

practices in software development due to their learning capacity and compatibility with existing

tools.

D3.1: AI-driven self-testing and automatic error correction for robustness 71

Another study [84] highlights the capability of OpenAI's GPT-4 in detecting software

vulnerabilities, comparing its performance with traditional static code analyzers like Snyk and

Fortify. The analysis, covering a range of repositories and programming languages, showed that

GPT-4 identified about four times as many vulnerabilities as its counterparts and provided

viable fixes with a low rate of false positives. This demonstrates the potential of LLMs not only

in detecting but also in repairing software vulnerabilities, indicating a significant advancement

in automated software security.

The paper [85] introduces VulBench, a benchmark combining data from CTF challenges and

real-world applications to evaluate the effectiveness of Large Language Models (LLMs) in

software vulnerability detection. The study finds that LLMs, particularly GPT-4, outperform

traditional deep learning models and static analyzers in simpler scenarios like CTF datasets.

However, their performance diminishes in more complex real-world datasets, highlighting a

limitation in their current ability to analyze intricate software systems. The paper suggests

future research should focus on enhancing LLMs' capabilities in processing complex projects

and integrating them with other detection techniques, such as fuzzing or static analysis, to

maximize their effectiveness in vulnerability detection.

3.3 AI4VULN System Requirements Analysis

This section will explain how the relevant system requirements identified in D2.1 will be

covered by AI4VULN.

Table 19: System requirements coverage by initial version of AI4VULN component

Req.

ID

Req. name Req.

description

Priority Coverage How addressed

SR-

011

Vulnerability

detection

The AI4CYBER

framework shall

be able to

identify

vulnerabilities

present in the

source code via

the AI4VULN

component.

M Partially

covered

AI4VULN will be tested

on its regression

testcases, open-source

software systems

containing known

vulnerabilities and

vulnerability databases.

After that, we will apply

AI4VULN on the target

source code to detect the

vulnerabilities. The result

will be used by AI4FIX.

The requirements will be validated in WP7. A training validation plan is available in Section

3.7.

3.4 AI4VULN Specification

AI4VULN is a command line static analyzer tool that is able to detect vulnerabilities in the

source code. Its output is the list of the detected vulnerabilities that is used by AI4FIX, but the

users can also use it to correct to validate or to correct the bugs.

In the following a detailed specification of the AI4VULN component according to C4 model

(https://c4model.com/) is provided.

https://c4model.com/
https://c4model.com/

D3.1: AI-driven self-testing and automatic error correction for robustness 72

3.4.1 System context

At system level AI4FIX uses the results of AI4VULN to correct security vulnerabilities and

developers or security engineers also use it to check, correct or validate the security relevant

bugs.

Figure 19 shows the system context diagram of AI4VULN. The input of AI4VULN is the

repository of the Java system to be analyzed. The developer who initiates the vulnerability

searching process supplies AI4VULN with the file paths. The AI4VULN software system then

processes the source code with static analysis. As a result, the developer receives the list of

possible vulnerabilities, which can also be forwarded to the AI4FIX system for automatic error

correction.

Figure 19: System context of AI4VULN

3.4.2 Container model

Figure 20 shows the AI4VULN container diagram. AI4VULN can be divided into four units.

First, the source code is analyzed by a language analyzer written in Java. The output of this

analysis is the Abstract Semantic Graph (ASG) which means that the input program is translated

into a graph representation. Using the ASG, the Control Flow Builder unit generates the Control

Flow Graph (CFG). The input of the Symbolic Execution Engine is the ASG supplemented

with the CFG. They will be used to simulate the execution of “all” possible execution paths of

the program. A symbolic execution tree is created from these execution paths. By traversing

the symbolic execution tree, VulnerabilityHunter identifies potential vulnerabilities.

D3.1: AI-driven self-testing and automatic error correction for robustness 73

Figure 20: Container model of AI4VULN

3.4.3 Component model

Figure 21 depicts the component model of the AI4VULN software system. Although

AI4VULN consists of four containers, only the Symbolic execution Engine can be further

decomposed, the others components are “simple”.

The Symbolic engine uses the CFG and the ASG to generate a tree of possible execution paths.

This generation process is supported by two components: the constraint solver and the path

selector. The constraint solver can eliminate unsatisfiable execution branches. Since running

the constraint solver itself can be very resource-demanding, we introduce heuristics to speed up

its operation, hence the name heuristic constraint solver.

The AI Supported path selector is responsible for prioritizing the examination of execution

branches on which we are more likely to find vulnerabilities. This is important because the

generation of possible execution branches is extremely resource intensive. If we limit the

execution time and the usable memory (which we often have to do), important errors may

remain undiscovered in the absence of proper prioritization. We train the AI on a database that

contains execution branches involving runtime vulnerabilities.

D3.1: AI-driven self-testing and automatic error correction for robustness 74

Figure 21: Component model of AI4VULN

3.4.4 Prospector Dataset

The paper from Sabetta et al. [86] focuses on the challenge of tracing vulnerabilities in open-

source software projects and introduces a tool named Prospector, designed, and developed in

the AssureMOSS [87] project to assist in this task. The core of the paper revolves around the

development and evaluation of Prospector, a tool that utilizes heuristics inspired by human

security experts to map vulnerability advisories to their corresponding fixes in source code.

Summary of the Dataset Used in the Paper:

- Dataset Overview: The paper discusses the utilization of a dataset comprising over

1300 vulnerabilities across various open-source projects. This dataset is fundamental in

testing and validating the efficacy of Prospector.

- Purpose of the Dataset: It serves as a test bed for evaluating Prospector’s ability to

rank candidate commits in such a way that the actual fix for a given vulnerability is

among the top-10 candidates in over 90% of the cases. This ability is crucial for reducing

the manual effort involved in identifying the correct commits that fix reported

vulnerabilities.

- Scope: It includes vulnerabilities from 723 open-source projects, developed in seven

different programming languages.

- Content: Each record in the dataset contains detailed information about a vulnerability,

including references to the commits that fix the vulnerability.

- Usage: The dataset was used in various configurations during the evaluation of

Prospector, helping to determine the tool's effectiveness in different scenarios.

- Benchmark for Tool Evaluation: The dataset provides a comprehensive and varied set

of real-world cases to assess Prospector's performance.

- Demonstration of Practical Application: By applying Prospector to this dataset, the

researchers could demonstrate the tool's practical utility in an industrial context.

D3.1: AI-driven self-testing and automatic error correction for robustness 75

- Contribution to Research: The dataset represents a significant contribution to the field,

offering a resource for further research and development of tools and methodologies in

vulnerability management.

In essence, the dataset plays a critical role in the paper by providing the means to evaluate the

Prospector tool's effectiveness in automating the process of linking known vulnerabilities in

open-source software to their respective fixes in the source code. The success of Prospector in

handling this dataset highlights its potential to significantly reduce the manual effort required

in vulnerability management and improve the efficiency of security practices in open-source

software development. In the AI4CYBER project we also leverage on this dataset for training

our generic model about finding and fixing security vulnerabilities.

3.4.5 JiraMiner dataset

To be able to determine whether a commit is security relevant, we needed labeled data from a

trustworthy source instead of manual labeling. Therefore, we built a tool which gathers

examples from open-source projects about issue types and code commits.

The JiraMiner dataset is gathered from Apache projects available in JIRA issue tracking

platform and their corresponding GitHub repositories for code.

The dataset is available at Zenodo [88]

3.4.5.1 JIRA to GitHub

Each JIRA issue has a description field, which describes the problem and what to do in the

issue. On the web frontend of JIRA an ‘Issue Links’ section can be seen which contains links

to other issues, GitHub pull requests or commits. This field however is not available on the

REST API (precisely, it is an empty list). In version 3 of the JIRA rest API, accessing remote

links could be easier, but the Apache JIRA did not support that version of the API at the time

of writing.

Every issue has a large number of custom fields as well, most of them are not filled out.

There are also comments and work log fields. The latter contains time tracking information

about users and pull requests. Links to GitHub pull requests or individual commits can be in

comments, work log entries and issue descriptions. The following problems arise:

- there aren’t any GitHub links for every resolved issue,

- some projects do not use GitHub,

- a JIRA project can relate to multiple GitHub repositories,

- the solution is done in a fork, not in the original repository,

- pull requests are referenced in the work logs or comments, which do not solve the

current issue, but relate in some way (e. g. the bug was accepted in that pull request or

something was removed which was added in that pull request),

- there could be links to renamed or deleted repositories,

- individual GitHub files are referenced,

- individual files (patch files or complete source files) are uploaded into JIRA and

attached to the issue,

- changelog for a larger version upgrade as a comment containing many irrelevant pull

requests.

D3.1: AI-driven self-testing and automatic error correction for robustness 76

Some projects have a comment like “Issue resolved by pull request x”, which was not

investigated. We gathered all the pull requests and commit links from the description,

comments and work log fields and filtered out the duplicates. If a commit is referenced in a pull

request and by itself as well, then it has to be filtered out. The problems mentioned above could

make the dataset fill with irrelevant and misleading commits.

Examples:

- aardvark repository contains spam (https://issues.apache.org/jira/projects/AAR/issues)

- 657 (+1 TST=test project) JIRA projects of which 209 does not contain links to any

GitHub pull request or commit

3.4.5.2 GitHub to JIRA

All the referenced GitHub repos from the JIRA projects were collected, which resulted in more

than 6000 collected repos. Only those were kept, where the owner of the repo is “apache”,

which resulted in 1354 repos. For these repositories all the pull requests were collected, and

issue keys from the titles were extracted. If a pull request has a corresponding JIRA issue, then

the pull request’s title likely starts with the issue’s key, e.g., “ARROW-18299:

[CI][GLib][macOS] Fix dependency install failures”, where “ARROW-18299” is the issue’s

key. Not every title starts with the issue key, therefore the first instance of a string matching

“[A-Z]+-[0-9]+“was extracted. (Not only the first instance should be collected.) Many pull

request titles reference UTF-8, CVEs, RFCs, JDK-s, which are obviously not issue keys.

Problems:

- Some issues are so new that they were not present in the downloaded JIRA issues.

- Some of these issue keys correspond to improvement proposals (e.g., SIP, RocketMQ

Improvement Proposals, RIP) or enhancement proposals (Cassandra Enhancement

Proposal, CEP), which are used for significant changes (not small fixes).

- Some projects use GitHub Issues to track bugs, improvements, features and reference

them in the same format. (e.g., BUG-6331 referring to #6331 GitHub Issue with bug

label)

- Often the project’s name in the issue key has a typo. E.g., BOOKKKEEPER instead of

BOOKKEEPER.

- Projects tracked with Bugzilla, have a key starting with BZ.

- Apache AIRFLOW has many referenced JIRA issues, but the project has been deleted

from Apache’s JIRA or it is restricted.

- APEX has been renamed APEXCORE, meaning that the JIRA issue keys were also

renamed, which makes the older pull requests harder to match with the corresponding

issue.

The mistyped issue keys are fixed by finding the closest match in the existing project, above a

certain similarity threshold. In many cases, this is not enough, the issue keys have to be

examined manually.

Number of pull requests 801199

Number of pull requests with a corresponding issue 314533

D3.1: AI-driven self-testing and automatic error correction for robustness 77

3.4.5.3 JSON format

The JIRAMiner dataset, focusing on JIRA-supported Apache projects (found at Apache JIRA5),

utilizes a comprehensive JSON structure to encapsulate the collected information. This JSON

structure is designed to accurately reflect the various components of a JIRA issue. The structure

includes the following elements:

Project: (JIRA project6):

• self: JIRA REST API resource link

• id: JIRA id

• key: JIRA key

• url: project URL from JIRA if filled out

• issue: list of JIRA issues

Issue: (JIRA issue7):

• self: JIRA REST API resource link

• id: JIRA id

• key: JIRA key

• issuetype: type of issue (IssueType)

• description: issue description

• status: status (Status)

• prlinks: list of referenced pull request links

• commitlinks: list of referenced commit links

• GitHublinks: list of references GitHub links (currently not in use)

• commits: list of commits

IssueType (JIRA issuetype8):

• self: JIRA REST API resource link

• name: issuetype name

Status (JIRA status9):

• self: JIRA REST API resource link

• name: status name

Commit (GitHub commit10):

• sha: commit hash

• message: commit message:

• files: list of files associated with the commit

• pullrequest: the number of the pull request from which the commit was accessed

• path: path to the downloaded commit on disk

File (GitHub file description in a commit):

• sha: file hash

• filename: name of the file

• status: ("added", "removed", "modified", "renamed", "copied", "changed",

"unchanged")

• contents_url: GitHub REST API resource link to the file in the commit’s state

• raw_url: GitHub raw resource link to the file in the commit’s state

5 https://issues.apache.org/jira
6 https://docs.atlassian.com/software/jira/docs/api/REST/7.6.1/#api/2/project
7 https://docs.atlassian.com/software/jira/docs/api/REST/7.6.1/#api/2/issue
8 https://docs.atlassian.com/software/jira/docs/api/REST/7.6.1/#api/2/issuetype
9 https://docs.atlassian.com/software/jira/docs/api/REST/7.6.1/#api/2/status
10 https://docs.GitHub.com/en/rest/commits/commits

https://issues.apache.org/jira
https://docs.atlassian.com/software/jira/docs/api/REST/7.6.1/#api/2/project
https://docs.atlassian.com/software/jira/docs/api/REST/7.6.1/#api/2/issue
https://docs.atlassian.com/software/jira/docs/api/REST/7.6.1/#api/2/issuetype
https://docs.atlassian.com/software/jira/docs/api/REST/7.6.1/#api/2/status
https://docs.github.com/en/rest/commits/commits

D3.1: AI-driven self-testing and automatic error correction for robustness 78

Project:

• issues: [Issue]

o issuetype: IssueType

o status: Status

o commits: [Commit]

o files: [File]

3.4.6 Identifying security relevance

The commit classification activity which will be used for guiding symbolic execution to

relevant code parts was initially done on the JiraMiner dataset. As a first attempt to build a

proof-of-concept classifier, we have gathered numerous issues and filtered them based on

keywords.

Table 20: Keyword classes in JIRA

Issue type Number of issues

Bug 128152

Improvement 100921

Sub-task 38281

New Feature 23168

Task 20515

Test 4295

Dependency upgrade 1772

Wish 1443

Technical Debt 844

Documentation 685

Story 298

Epic 288

Dependency 66

Other/Misc 135

D3.1: AI-driven self-testing and automatic error correction for robustness 79

Table 21: Number of issues, which have at least one associated java file

Issue type Number of issues

Bug 128064

Improvement 100834

New Feature 23181

Test 4298

Dependency upgrade 1772

Security-relevant keywords:

encryption, cve, security, secure, vuln, vulnerability, attack, defense, attacker, hardening

Similar keywords found in the descriptions:

secure, defense, hardening, cve, vulnearbility, security=, secures, defensive, attack, vulnerabilityid, attacks,

vulneraility, secure, security, cves, attackers, vulnid, encryptions, encryption, -encryption, vuln, attacker, vulns,

security/, harden

Security-relevant pull-request/issue pairs: 8225 (out of which 8210 have associated java files)

Classifier:

- Calculating code metrics for the pull requests and saving them in a separate database/csv

for further operations. (This way the whole codebase only has to be processed once.)

- The commits for one pull request have to be merged into one, keeping only the last

changes for each file. (The intermediate changes in commits have to be discarded,

because the JIRA issues are associated with the pull requests, not the individual

commits.)

- A separate one-class classifier (e.g., decision trees, random forest, SVM, Naive Bayes)

for each issue type (e.g., for deciding whether it is an "Improvement" or not), or a multi-

class classifier for the whole problem.

- A separate model for classifying security-relevant pull requests based on the same data

using oversampling techniques to combat the high class-imbalance.

3.4.6.1 Metrics

Three types of representations were calculated for each file downloaded by the Apache-JIRA

miner:

- class-level code metrics calculated using static analysis,

- a 10-dimensional embedding created using a Word2Vec model trained on Java code,

- a 100-dimensional embedding created using a Doc2Vec model trained on Java code.

D3.1: AI-driven self-testing and automatic error correction for robustness 80

The class-level metrics were calculated using the CK tool11, which was used in other software

evolution related machine learning projects (e.g., change-proneness detection).

The 35 metrics are the following:

- CBO (Coupling between objects): Counts the number of dependencies a class has. The

tools check for any type used in the entire class (field declaration, method return types,

variable declarations, etc.). It ignores dependencies to Java itself (e.g., java.lang.String).

- CBO Modified (Coupling between objects): Counts the number of dependencies a class

has. It is very similar to the CKTool's original CBO. However, this metric considers a

dependency from a class as being both the references the type makes to others and the

references that it receives from other types.

- FAN-IN: Counts the number of input dependencies a class has, i.e., the number of

classes that reference a particular class. For instance, given a class X, the fan-in of X

would be the number of classes that call X by referencing it as an attribute, accessing

some of its attributes, invoking some of its methods, etc.

- FAN-OUT: Counts the number of output dependencies a class has, i.e., the number of

other classes referenced by a particular class. In other words, given a class X, the fan-

out of X is the number of classes called by X via attributes reference, method

invocations, object instances, etc.

- DIT (Depth Inheritance Tree): It counts the number of "fathers" a class has. All classes

have DIT at least 1 (everyone inherits java.lang.Object). In order to make it happen,

classes must exist in the project (i.e., if a class depends upon X which relies in a

jar/dependency file, and X depends upon other classes, DIT is counted as 2).

- NOC (Number of Children): It counts the number of immediate subclasses that a

particular class has.

- Number of fields: Counts the number of fields. Specific numbers for total number of

fields, static, public, private, protected, default, final, and synchronized fields.

- Number of methods: Counts the number of methods. Specific numbers for total number

of methods, static, public, abstract, private, protected, default, final, and synchronized

methods. Constructor methods also count here.

- Number of visible methods: Counts the number of visible methods. A method is visible

if it is not private.

- NOSI (Number of static invocations): Counts the number of invocations to static

methods. It can only count the ones that can be resolved by the JDT.

- RFC (Response for a Class): Counts the number of unique method invocations in a

class. As invocations are resolved via static analysis, this implementation fails when a

method has overloads with the same number of parameters, but different types.

- WMC (Weight Method Class) or McCabe's complexity. It counts the number of branch

instructions in a class.

- LOC (Lines of code): It counts the lines of count, ignoring empty lines and comments

(i.e., it is Source Lines of Code, or SLOC). The number of lines here might be a bit

different from the original file, as we use JDT's internal representation of the source

code to calculate it.

11 https://GitHub.com/mauricioaniche/ck

https://github.com/mauricioaniche/ck

D3.1: AI-driven self-testing and automatic error correction for robustness 81

- LCOM (Lack of Cohesion of Methods): Calculates LCOM metric. This is the very first

version of metric, which is not reliable. LCOM-HS can be better (hopefully, you will

send us a pull request).

- LCOM* (Lack of Cohesion of Methods): This metric is a modified version of the current

version of LCOM implemented in CK Tool. LCOM* is a normalized metric that

computes the lack of cohesion of class within a range of 0 to 1. Then, the closer to 1 the

value of LCOM* in a class, the less the cohesion degree of this respective class. The

closer to 0 the value of LCOM* in a class, the more the cohesion of this respective class.

This implementation follows the third version of LCOM* defined in [89].

- TCC (Tight Class Cohesion): Measures the cohesion of a class with a value range from

0 to 1. TCC measures the cohesion of a class via direct connections between visible

methods, two methods or their invocation trees access the same class variable.

- LCC (Loose Class Cohesion): Like TCC but it further includes the number of indirect

connections between visible classes for the cohesion calculation. Thus, the constraint

LCC >= TCC holds always.

- Quantity of returns: The number of return instructions.

- Quantity of loops: The number of loops (i.e., for, while do while, enhanced for).

- Quantity of comparisons: The number of comparisons (i.e., == and !=). Note: != is only

available in 0.4.2+.

- Quantity of try/catches: The number of try/catches

- Quantity of parenthesized expressions: The number of expressions inside parenthesis.

- String literals: The number of string literals (e.g., "John Doe"). Repeated strings count

as many times as they appear.

- Quantity of Number: The number of numbers (i.e., int, long, double, float) literals.

- Quantity of Math Operations: The number of math operations (times, divide, remainder,

plus, minus, left shift, right shift).

- Quantity of Variables: Number of declared variables.

- Max nested blocks: The highest number of blocks nested together.

- Quantity of Anonymous classes, inner classes, and lambda expressions: The name says

it all. Note that whenever an anonymous class or an inner class is declared, it becomes

an "entire new class", e.g., CK generates A.B and A. B$C, C being an inner class inside

A.B. However, lambda expressions are not considered classes, and thus, are part of the

class/method they are embedded into. A class or a method only has the number of inner

classes that are declared at its level, e.g., an inner class that is declared inside a method

M2, that is inside an anonymous class A, that is declared inside a method M, that finally

is declared inside a class C, will not count in class C, but only in method M2 (first-level

method it is embodied), and anonymous class A (first-level class it is embodied).

- Number of unique words: Number of unique words in the source code. At method level,

it only uses the method body as input. At class level, it uses the entire body of the class

as metrics. The algorithm basically counts the number of words in a method/class, after

removing Java keywords. Names are split based on camel case and underline (e.g.,

longName_likeThis becomes four words). See WordCounter class for details on the

implementation.

- Number of Log Statements: Number of log statements in the source code. The counting

uses REGEX compatible with SLF4J and Log4J API calls. See

NumberOfLogStatements.java and the test examples (NumberOfLogStatementsTest

and fixtures/logs) for more info.

D3.1: AI-driven self-testing and automatic error correction for robustness 82

- Has Javadoc: Boolean indicating whether a method has javadoc. (Only at method-level

for now)

- modifiers: public/abstract/private/protected/native modifiers of classes/methods. Can be

decoded using org.eclipse.jdt.core.dom.Modifier.

- Usage of each variable: How often each variable was used inside each method.

- Usage of each field: How often each local field was used inside each method, local field

are fields within a class (subclasses are not included). Also, indirect local field usages

are detected, indirect local field usages include all usages of fields within the local

invocation tree of a class e.g., A invokes B and B uses field a, then a is indirectly used

by A.

- Method invocations: All directly invoked methods, variations are local invocations and

indirect local invocations.

There were some difficulties with the tool, mainly that often it skipped many files in the same

source folder. So, it had to be run multiple times on smaller groups of source files.

The Word2Vec model used for creating an embedding is the same, which was used in the Sorter

(Patch prioritizer). A gensim12 implementation was utilized, which was trained on a large Java

corpus13. The model creates a 10-dimensional embedding for the individual tokens, which are

then averaged to obtain a vector representation for a given code snippet.

The used Doc2Vec model is also the same, which was used in the Sorter. The gensim

implementation was also trained in the same large Java corpus. Unlike the previous one, this

model creates a document-level embedding (file-level in this case).

3.4.6.2 Training results

The metrics and embeddings were further aggregated to get a commit-level feature vector. Two

types of simple aggregation were used, one is the averaging of the vectors, and the other is the

summation of the vectors.

PyCaret, a low-code machine learning library, was used, which trains many different classifiers

(KNN, Logistic regression, SVM, ridge classifier, random forest, ada boost, linear discriminant

analysis, extra trees, gradient boosting, light gradient boosting, decision tree, naïve bayes,

quadratic discriminant analysis) on the same dataset.

The results were similarly bad on all the datasets (class-level metrics, word2vec embedding,

doc2vec embedding, all 3 at once), both commit aggregation techniques (averaging,

summation) and classifiers. F1 score was between 0 and 0.2, recall was often below 10%, when

recall was high, then accuracy was much worse. The task is hard because the dataset is very

imbalanced, only a few thousand positive examples are there compared to the few hundred

thousand negative examples. Even with imbalance fixing techniques (SMOTE) used by

PyCaret, the results were similarly bad and practically unusable.

Pycaret results using the metrics datasets with averaging as aggregation method and with fixing

imbalance.

12 https://radimrehurek.com/gensim/
13 https://groups.inf.ed.ac.uk/cup/javaGithub/

https://radimrehurek.com/gensim/
https://groups.inf.ed.ac.uk/cup/javaGithub/
https://groups.inf.ed.ac.uk/cup/javaGithub/

D3.1: AI-driven self-testing and automatic error correction for robustness 83

Table 22: Metrics results

Model Accuracy AUC Recall Precision F1 Kappa MCC

Logistic Regression 0.9953 0.4851 0.0000 0.0000 0.0000 -0.0000 -0.0001

K Neighbors Classifier 0.9953 0.5326 0.0032 0.2833 0.0063 0.0062 0.0291

Ridge Classifier 0.9953 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Ada Boost Classifier 0.9953 0.5759 0.0000 0.0000 0.0000 0.0000 0.0000

Dummy Classifier 0.9953 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000

Quadratic

Discriminant Analysis

0.9952 0.4996 0.0000 0.0000 0.0000 -0.0002 -0.0006

Linear Discriminant

Analysis

0.9952 0.5746 0.0000 0.0000 0.0000 -0.0002 -0.0005

Random Forest

Classifier

0.9951 0.5618 0.0128 0.1921 0.0236 0.0230 0.0471

Light Gradient

Boosting Machine

0.9951 0.5913 0.0040 0.0613 0.0075 0.0069 0.0145

Extra Trees Classifier 0.9950 0.5779 0.0287 0.2465 0.0512 0.0503 0.0823

Gradient Boosting

Classifier

0.9949 0.5976 0.0024 0.0196 0.0043 0.0034 0.0054

SVM - Linear Kernel 0.9948 0.0000 0.0008 0.0009 0.0009 0.0002 -0.0000

Decision Tree

Classifier

0.9916 0.5285 0.0335 0.0393 0.0360 0.0318 0.0320

Naive Bayes 0.1339 0.5281 0.9003 0.0048 0.0096 0.0003 0.0062

The results show that the approach which uses metrics derived from the source code and commit

metadata does not meet the expected level of accuracy. Therefore, as future research we will

include the source code (the amount of code required for accurate classification will be subject

to research) in the classification data directly using LLM.

3.4.6.3 LLM-based identification of security-relevance (proof of concept)

Security relevance evaluation of code snippets with GPT-3.5 turbo and GPT-4 turbo was

conducted with a prompt on the Vul4J dataset [90]

GPT was prompted 10 times on each entry of the dataset, once before commit (vulnerable) and

once after the commit (corrected) and returned whether it found security relevant or not. It was

prompted 10 times to try to minimize the randomness of GPT. Both GPTs evaluated

approximately the same amount for the before and after commit code snippets without any

D3.1: AI-driven self-testing and automatic error correction for robustness 84

significant difference, so the code snippet does not provide good enough context to GPT to

evaluate it from a prompt.

Figure 22: Security-relevance classification

We continued with fine-tuning GPT4 with OpenAI playground on MSR-20 dataset [91]:

200 C++ code snippets were provided, 50% insecure, 50% secure to create a fine-tuned GPT

for binary classification, where 0 was secure and 1 was insecure. After evaluating it on 250

other code snippets it achieved 52% accuracy with 46.7% precision and 37.7% recall.

3.4.7 LLM-based Vulnerability detection (proof of concept)

To test the vulnerability detection capabilities of Large Language Models (LLMs), we forked

the AutoGPT14 project, which aims to develop an autonomous AI capable of performing various

tasks without human intervention.

Like our approach in AI-based test generation (Section 2.1.4), we utilized the OWASP Java

benchmark for this purpose. This benchmark comprises both vulnerable and non-vulnerable

code snippets. Unlike in test generation, the AI's task here is to identify vulnerabilities without

the necessity to exploit them. Given the benchmark's characteristics, detecting vulnerabilities

posed a greater challenge for the AI compared to generating tests.

We used the following prompt:

You are VulnGPT, EvaluatorAI, whose task is to find vulnerabilities in a given source file. I will provide you with code

snippets, and you will analyze them to identify potential security flaws or weaknesses. Your decisions must always be made

independently without seeking user assistance. Play to your strengths as an LLM and pursue simple strategies with no legal

complications.

GOALS:

1. Analyze the provided source code snippet for security vulnerabilities

2. Generate a list of findings and possible fixes

3. Upon request review your previous findings and refine your result according to that

Constraints:

1. ~4000 word limit for short term memory. Your short-term memory is short, so immediately save important information to

files.

2. If you are unsure how you previously did something or want to recall past events, thinking about similar events will help

you remember.

14 https://GitHub.com/Significant-Gravitas/AutoGPT

D3.1: AI-driven self-testing and automatic error correction for robustness 85

3. No user assistance

4. Exclusively use the commands listed in double quotes e.g., "command name"

Performance Evaluation:

1. Continuously review and analyze your actions to ensure you are performing to the best of your abilities.

2. Constructively self-criticize your big-picture behavior constantly.

3. Reflect on past decisions and strategies to refine your approach.

4. Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps.

Result types:

VULNERABILITY: Exploitable vulnerability, such as buffer overflow.

POTENTIAL_VULN: Potential vulnerability without evidence that it can be exploited.

IMPROVEMENT: Robustness or quality improvement, such as error handling and error messages.

You should only respond in JSON format as described below Response Format:

{

"thoughts": {

"text": "thought",

"reasoning": "reasoning",

"plan": "short, bulleted list that conveys long-term plan",

"criticism": "constructive self-criticism"

},

"results": [

{

"short description": "name",

"explanation": "explanation",

"type": "vulnerability type"

}

]

}

Ensure the response can be parsed by Python json.loads

Analyze the next source snippet, and respond using the format specified above:

<code snippet>

In the benchmark, each test initially appeared vulnerable, primarily because the exploitability

hinged on the 'doSomething' function. Consequently, when processed as a one-shot request,

Large Language Models (LLMs) identified every test case as either vulnerable or potentially

so. This trend became more pronounced due to the placement of the 'doSomething' function

after sections of code that appeared vulnerable. By the time the LLM encountered the

'doSomething' function, it had already assessed the preceding code for vulnerabilities.

To address this behavior, we employed a method of self-reflection. Our aim was to avoid

revealing more information about the vulnerabilities than what was present in the raw source

code. Therefore, we formulated simple reflection questions for each detected issue, tailoring

these questions according to the type of problem reported. Depending on the reported problem

type we used the following questions:

D3.1: AI-driven self-testing and automatic error correction for robustness 86

Are you sure about the vulnerability referenced as <id>?

<id> is really a vulnerability? Is it possible to exploit?

Are you sure about the potential vulnerability referenced as <id>?

Can the improvement referenced as <id> eliminate any potential vulnerability?

Using the self-reflection technique, the LLMs have a chance to successfully analyze the

doSomething function as part of the whole task and provide a proper decision. However, in

some cases, the analysis was proper, but the final decision was incorrect. For example, some of

the tests passed the user input to the evaluation using the environment variables, which were

executed using the following insecureCmd.sh script:

#!/bin/sh

echo Your original string:

eval $FOO

echo Your string reversed value is:

echo $FOO | rev

If we passed the content of this script also along with the Java code snippet, the LLM provided

the following analysis after the self-reflection question:

Upon further review, the 'Command Injection' vulnerability is not exploitable in this case. The user input is passed as an

environment variable (FOO) to the insecureCmd.sh script, which then uses 'eval' to execute the value of FOO. However, since

the value of FOO is passed as an environment variable and not directly concatenated into the command string, it is not possible

for an attacker to inject arbitrary commands.

The analysis accurately identified that the user parameter could be passed to the command

execution code, yet the assessment of exploitability was flawed.

Due to these identified issues, in the command injection test category the LLMs yielded the

following detection statistics:

Table 23: Command injection test results

Command

injection

Models

ChatGPT 3.5 ChatGPT 4

Prompting One-shot Self-reflection One-shot Self-reflection

TP 27 23 92 62

TN 68 79 9 66

FP 35 24 94 37

FN 65 69 0 30

TPR 0.29 0.25 1 0.67

FPR 0.34 0.23 0.91 0.35

Precision 0.49 0.52 0.52 0.66

F1 0.36 0.34 0.68 0.66

D3.1: AI-driven self-testing and automatic error correction for robustness 87

Figure 23: Scorecard for command injection results

As demonstrated in Figure 23, GPT-4, enhanced with self-reflection capabilities, outperformed

random guessing by a significant margin. This outcome underscores the promising potential of

using Large Language Models (LLMs) in detecting vulnerabilities, especially in comparison to

other available tools.

In addition to addressing command injection issues, we also tested the vulnerability detection

capabilities of Large Language Models (LLMs) with weak random test cases. Here too, we

encountered detection challenges. Although the LLMs identified the issue of insecure

randomness from the descriptions, they did not categorize it as a vulnerability. Despite attempts

to enhance detection by providing more detailed explanations about the need for secure

randomness, there was no improvement in detection accuracy.

A typical instance where insecure randomness was correctly identified but not deemed

significant involved cookie generation. In this scenario, secure randomness is crucial for cookie

generation. However, since randomness was part of a test application where the cookies weren't

used in any real operations, the issue was overlooked. This highlights a gap in the LLMs' ability

to contextualize the importance of vulnerabilities based on their application environment.

Upon further review, the use of Math.random() in this specific context is for generating a 'rememberMeKey' value, which is

not used for any security-critical operations such as encryption or authentication. Therefore, the use of Math.random() in this

case does not pose a significant security risk, and the previous assessment of this as a vulnerability is not accurate.

Owing to these challenges, one-shot prompting produced superior results for both GPT-3.5 and

GPT-4. However, the improvement was notably more significant with GPT-4, as this model

demonstrated a markedly better understanding that the evaluated test case did not pose any real

threat. As evident in the table below, the one-shot results from GPT-4 were highly accurate.

D3.1: AI-driven self-testing and automatic error correction for robustness 88

Table 24: Testing one-shot and self-reflection techniques

Weak random
Models

ChatGPT 3.5 ChatGPT 4

Prompting One-shot Self-reflection One-shot Self-reflection

TP 90 78 201 30

TN 201 188 156 156

FP 18 31 4 4

FN 72 84 20 191

TPR 0.55 0.48 0.91 0.13

FPR 0.08 0.14 0.03 0.03

Precision 0.76 0.70 0.94 0.49

F1 0.64 0.57 0.92 0.21

Figure 24: Scorecard for weak randomness results

During our tests we tested the vulnerability detection capabilities for 381 test cases of using

weak random. The presented results show that LLMs can perform vulnerability detection for

the tested issue types with up to 0,92 F1 score. Individual test results may vary; however, the

high amount of test cases imply that the expected performance is close to the observed

performance.

3.5 AI4VULN Communication Interfaces

This subsection will describe the communication interfaces of AI4VULN. AI4VULN detects

the vulnerability in the source code and the output contains position of the vulnerability and the

trace information which leads the vulnerability. AI4VULN supports XML and JSON format.

An example for XML output is the following:

<attribute type = "composite" name = "RH_CCE" context = "warning">

 <attribute type = "string" name = "Path" context = "" value = "test1.java"/>

 <attribute type = "int" name = "Line" context = "" value = "18"/>

D3.1: AI-driven self-testing and automatic error correction for robustness 89

 <attribute type = "int" name = "Column" context = "" value = "22"/>

 <attribute type = "int" name = "EndLine" context = "" value = "18"/>

 <attribute type = "int" name = "EndColumn" context = "" value = "40"/>

 <attribute type = "string" name = "WarningText" context = "" value = "Cannot

cast 'next' to type 'Integer'

"/>

 <attribute type = "composite" name = "ExtraInfo" context = "trace">

 <attribute type = "composite" name = "SourceLink" context = "">

 <attribute type = "string" name = "Path" context = "" value = "test1.java"/>

 <attribute type = "int" name = "Line" context = "" value = "12"/>

 <attribute type = "int" name = "Column" context = "" value = "2"/>

 <attribute type = "int" name = "EndLine" context = "" value = "12"/>

 <attribute type = "int" name = "EndColumn" context = "" value = "23"/>

 <attribute type = "int" name = "CallStackDepth" context = "" value = "0"/>

 </attribute>

 <attribute type = "composite" name = "SourceLink" context = "">

 <attribute type = "string" name = "Path" context = "" value = "test1.java"/>

 <attribute type = "int" name = "Line" context = "" value = "15"/>

 <attribute type = "int" name = "Column" context = "" value = "9"/>

 <attribute type = "int" name = "EndLine" context = "" value = "15"/>

 <attribute type = "int" name = "EndColumn" context = "" value = "12"/>

 <attribute type = "int" name = "CallStackDepth" context = "" value = "0"/>

 </attribute>

 <attribute type = "composite" name = "SourceLink" context = "">

 <attribute type = "string" name = "Path" context = "" value = "test1.java"/>

 <attribute type = "int" name = "Line" context = "" value = "16"/>

 <attribute type = "int" name = "Column" context = "" value = "23"/>

 <attribute type = "int" name = "EndLine" context = "" value = "16"/>

 <attribute type = "int" name = "EndColumn" context = "" value = "31"/>

 <attribute type = "int" name = "CallStackDepth" context = "" value = "0"/>

 </attribute>

 <attribute type = "composite" name = "SourceLink" context = "">

 <attribute type = "string" name = "Path" context = "" value = "test1.java"/>

 <attribute type = "int" name = "Line" context = "" value = "16"/>

 <attribute type = "int" name = "Column" context = "" value = "4"/>

 <attribute type = "int" name = "EndLine" context = "" value = "16"/>

 <attribute type = "int" name = "EndColumn" context = "" value = "34"/>

 <attribute type = "int" name = "CallStackDepth" context = "" value = "0"/>

 </attribute>

 <attribute type = "composite" name = "SourceLink" context = "">

 <attribute type = "string" name = "Path" context = "" value = "test1.java"/>

 <attribute type = "int" name = "Line" context = "" value = "17"/>

 <attribute type = "int" name = "Column" context = "" value = "14"/>

 <attribute type = "int" name = "EndLine" context = "" value = "17"/>

 <attribute type = "int" name = "EndColumn" context = "" value = "21"/>

 <attribute type = "int" name = "CallStackDepth" context = "" value = "0"/>

 </attribute>

 <attribute type = "composite" name = "SourceLink" context = "">

 <attribute type = "string" name = "Path" context = "" value = "test1.java"/>

 <attribute type = "int" name = "Line" context = "" value = "17"/>

D3.1: AI-driven self-testing and automatic error correction for robustness 90

 <attribute type = "int" name = "Column" context = "" value = "10"/>

 <attribute type = "int" name = "EndLine" context = "" value = "17"/>

 <attribute type = "int" name = "EndColumn" context = "" value = "24"/>

 <attribute type = "int" name = "CallStackDepth" context = "" value = "0"/>

 </attribute>

 <attribute type = "composite" name = "SourceLink" context = "">

 <attribute type = "string" name = "Path" context = "" value = "test1.java"/>

 <attribute type = "int" name = "Line" context = "" value = "18"/>

 <attribute type = "int" name = "Column" context = "" value = "34"/>

 <attribute type = "int" name = "EndLine" context = "" value = "18"/>

 <attribute type = "int" name = "EndColumn" context = "" value = "38"/>

 <attribute type = "int" name = "CallStackDepth" context = "" value = "0"/>

 </attribute>

 <attribute type = "composite" name = "SourceLink" context = "">

 <attribute type = "string" name = "Path" context = "" value = "test1.java"/>

 <attribute type = "int" name = "Line" context = "" value = "18"/>

 <attribute type = "int" name = "Column" context = "" value = "31"/>

 <attribute type = "int" name = "EndLine" context = "" value = "18"/>

 <attribute type = "int" name = "EndColumn" context = "" value = "40"/>

 <attribute type = "int" name = "CallStackDepth" context = "" value = "0"/>

 </attribute>

 </attribute>

</attribute>

3.6 AI4VULN Installation and User Guide

VULHunter is a module of SourceMeter and cannot be executed without it. The detailed user

can be found in the SourceMeter package, which can be downloaded from

https://sourcemeter.com/

3.7 AI4VULN Unit Testing

This subsection provides the unit tests of AI4VULN.

Table 25: System test case AI4VULN_001

Test Case

ID

AI4VULN_001 Component AI4VULN

Req ID SR-011 Priority High

Description We measure TP, FP, TN, FN scores of AI4VULN on its regression test

Tested by FEA

Pre-

condition(s)

Regression tests for AI4VULN.

Test steps

1 We run AI4VULN on its regression tests

2 We evaluate the results

https://sourcemeter.com/

D3.1: AI-driven self-testing and automatic error correction for robustness 91

3 We measure the TP, FP, TN, FN scores

Input data Regression test

Result The improved version of AI4VULN on its regression test. The improvements

can be measured.

Test Case

Result

Achieved /Not achieved

Table 26: System test case AI4VULN_002

Test Case

ID

AI4VULN_002 Component AI4VULN

Req ID SR-011 Priority High

Description We measure the performance of AI4VULN on a large set of large open-

source software.

Tested by FEA

Pre-

condition(s)

Collection of open-source software

Test steps

1 We run AI4VULN on a set of large open-source software

2 We evaluate the results (TP and FP)

3 We compare the execution time and used memory with the earlier version

Input data Collection of large open-source systems and the previous execution results

Result We can see the change in the performance

Test Case

Result

Achieved /Not achieved

3.7.1 Validation on open-source projects

The evaluation of RTEHunter on open-source systems will be performed after the small-scale

tests are completed. As a starting point, a database of 209 Java systems is already available.

These systems are from different domains and their size range from a thousand to 2.5 million

lines of code. The histogram of the LOC is presented in Figure 25.

D3.1: AI-driven self-testing and automatic error correction for robustness 92

Figure 25: Lines of Code histogram of the examined Java projects

Table 27 shows the minimum, maximum, and the average lines of code and the number of

classes metric of the systems.

Table 27: The Lines of Code and Number of Classes metrics of the examined Java projects

 Lines of Code Number of Classes

Minimum 993 17

Maximum 2,594,569 16,934

Average 140,653 1,090

3.7.1.1 Measuring the improvements

To verify the improvement of our approaches, we will execute both the original and the

improved versions of RTEHunter on the Java systems. During the evaluation of the results, we

will monitor changes in the detected runtime errors, i.e., the shifting of true positive and false

positive alerts. We will also measure performance changes, such as changes in memory

consumption and runtime.

D3.1: AI-driven self-testing and automatic error correction for robustness 93

4 Conclusions

This section concludes this deliverable summarizing the main results and future works.

The deliverable has presented the specification of the initial version of the two components in

AI4CYBER Framework dedicated to AI-driven fixing of code and AI-driven vulnerability

testing, AI4FIX and AI4VULN, respectively.

AI4FIX is built using a general software evolution model containing robustness improvements

and a customized model used for improved test and fix generation capabilities. The initial

results show that LLM-based solutions can carry out these tasks.

The initial version of AI4VULN is already able to detect bugs in the code but it is not able to

follow the execution paths properly. In this project we improved the symbolic execution engine

of the baseline solution so that it can find more bugs and the false positive rate is lower.

The tools are interconnected as the potential vulnerabilities detected by AI4VULN can be

corrected by AI4FIX, therefore, the tools are implemented in a common framework of AI-

driven code testing.

For the future version of the prototypes, based on the presented research and proof-of-concept

results, we will implement locally deployable LLM-based version of AI4FIX and AI4VULN

in a common framework. The context size required for improved results will be further studied.

For AI4VULN, after performing the small-scale java tests, we will also it on the large-scale,

open-source Java projects. The focus will be not only on the accuracy of the error detection, but

on the performance: the amount of memory consumed, and the time required for analysis. Once

we get an idea of the current state of the system, we will delve into the development of constraint

solver heuristics and AI-supported route selection.

The final version of the tools along with the validation results will be presented in D3.3. The

validation of both components will be conducted in the context of selected Use case 2 banking

applications, testing and fixing their code.

D3.1: AI-driven self-testing and automatic error correction for robustness 94

References

[1] “AI4CYBER”, Accessed: Jan. 29, 2024. [Online]. Available: https://www.ai4cyber.eu

[2] K. Alrashedy and A. Aljasser, “Can LLMs Patch Security Issues?,” Nov. 2023, [Online].

Available: http://arxiv.org/abs/2312.00024

[3] S. Haque, Z. Eberhart, A. Bansal, and C. McMillan, “Semantic Similarity Metrics for

Evaluating Source Code Summarization,” IEEE International Conference on Program

Comprehension, vol. 2022-March, pp. 36–47, Apr. 2022, [Online]. Available:

http://arxiv.org/abs/2204.01632

[4] J. Ratzinger, T. Sigmund, P. Vorburger, and H. Gall, “Mining Software Evolution to

Predict Refactoring,” in First International Symposium on Empirical Software

Engineering and Measurement (ESEM 2007), IEEE, Sep. 2007, pp. 354–363. doi:

10.1109/ESEM.2007.9.

[5] M. Alenezi, M. Akour, and O. Al Qasem, “Harnessing deep learning algorithms to

predict software refactoring,” Telkomnika (Telecommunication Computing Electronics

and Control), vol. 18, no. 6, pp. 2977–2982, Dec. 2020, doi:

10.12928/TELKOMNIKA.v18i6.16743.

[6] M. Aniche, E. Maziero, R. Durelli, and V. H. S. Durelli, “The Effectiveness of

Supervised Machine Learning Algorithms in Predicting Software Refactoring,” IEEE

Transactions on Software Engineering, vol. 48, no. 4, pp. 1432–1450, Apr. 2022, doi:

10.1109/TSE.2020.3021736.

[7] A. Barbez, F. Khomh, and Y. G. Gueheneuc, “Deep Learning Anti-Patterns from Code

Metrics History,” in Proceedings - 2019 IEEE International Conference on Software

Maintenance and Evolution, ICSME 2019, Institute of Electrical and Electronics

Engineers Inc., Sep. 2019, pp. 114–124. doi: 10.1109/ICSME.2019.00021.

[8] E. Linstead, C. Lopes, and P. Baldi, “An application of Latent Dirichlet Allocation to

analyzing software evolution,” in Proceedings - 7th International Conference on

Machine Learning and Applications, ICMLA 2008, 2008, pp. 813–818. doi:

10.1109/ICMLA.2008.47.

[9] P. Behnamghader, R. Alfayez, K. Srisopha, and B. Boehm, “Towards better

understanding of software quality evolution through commit-impact analysis,” in

Proceedings - 2017 IEEE International Conference on Software Quality, Reliability and

Security, QRS 2017, Institute of Electrical and Electronics Engineers Inc., Aug. 2017,

pp. 251–262. doi: 10.1109/QRS.2017.36.

[10] F. Alghanim, M. Azzeh, A. El-Hassan, and H. Qattous, “Software Defect Density

Prediction Using Deep Learning,” IEEE Access, vol. 10, pp. 114629–114641, 2022, doi:

10.1109/ACCESS.2022.3217480.

[11] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classification models

for software defect prediction: A proposed framework and novel findings,” in IEEE

Transactions on Software Engineering, 2008, pp. 485–496. doi: 10.1109/TSE.2008.35.

[12] S. Delphine Immaculate, M. Farida Begam, and M. Floramary, “Software Bug

Prediction Using Supervised Machine Learning Algorithms,” in 2019 International

Conference on Data Science and Communication (IconDSC), IEEE, Mar. 2019, pp. 1–

7. doi: 10.1109/IconDSC.2019.8816965.

[13] S. Shivaji, E. James Whitehead, R. Akella, and S. Kim, “Reducing features to improve

code change-based bug prediction,” IEEE Transactions on Software Engineering, vol.

39, no. 4, pp. 552–569, 2013, doi: 10.1109/TSE.2012.43.

[14] S. Eski and F. Buzluca, “An empirical study on object-oriented metrics and software

evolution in order to reduce testing costs by predicting change-prone classes,” in

Proceedings - 4th IEEE International Conference on Software Testing, Verification, and

Validation Workshops, ICSTW 2011, 2011, pp. 566–571. doi: 10.1109/ICSTW.2011.43.

D3.1: AI-driven self-testing and automatic error correction for robustness 95

[15] A. Parashar and J. K. Chhabra, “Mining software change data stream to predict

changeability of classes of object-oriented software system,” Evolving Systems, vol. 7,

no. 2, pp. 117–128, Jun. 2016, doi: 10.1007/s12530-016-9151-y.

[16] OpenAI, “ChtGPT.” Accessed: Jan. 22, 2024. [Online]. Available:

https://chat.openai.com/

[17] Meta, “Code Llama.” Accessed: Jan. 22, 2024. [Online]. Available:

https://ai.meta.com/blog/code-llama-large-language-model-coding/

[18] Microsoft, “Copilot.”

[19] Anthropic, “Claude.” Accessed: Jan. 22, 2024. [Online]. Available: claude.ai

[20] C. Le Goues, M. Pradel, A. Roychoudhury, and S. Chandra, “Automatic Program

Repair,” IEEE Softw, vol. 38, no. 4, pp. 22–27, 2021, doi: 10.1109/MS.2021.3072577.

[21] I. Paik and J.-W. Wang, “Improving Text-to-Code Generation with Features of Code

Graph on GPT-2,” Electronics (Basel), vol. 10, p. 2706, Jan. 2021, doi:

10.3390/electronics10212706.

[22] M. Lajkó, V. Csuvik, and L. Vidács, “Towards JavaScript Program Repair with

Generative Pre-Trained Transformer (GPT-2),” in Proceedings of the Third

International Workshop on Automated Program Repair, in APR ’22. New York, NY,

USA: Association for Computing Machinery, 2022, pp. 61–68. doi:

10.1145/3524459.3527350.

[23] P. Gyimesi et al., “BugsJS: a Benchmark of JavaScript Bugs,” in 2019 12th IEEE

Conference on Software Testing, Validation and Verification (ICST), 2019, pp. 90–101.

doi: 10.1109/ICST.2019.00019.

[24] D. and C. V. and V. L. Lajkó Márk and Horváth, “Fine-Tuning GPT-2 to Patch

Programs, Is It Worth It?,” in Computational Science and Its Applications – ICCSA 2022

Workshops, B. and M. S. and R. A. M. A. C. and G. C. Gervasi Osvaldo and Murgante,

Ed., Cham: Springer International Publishing, 2022, pp. 79–91.

[25] D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “QuixBugs: A Multi-Lingual Program

Repair Benchmark Set Based on the Quixey Challenge,” in Proceedings Companion of

the 2017 ACM SIGPLAN International Conference on Systems, Programming,

Languages, and Applications: Software for Humanity, in SPLASH Companion 2017.

New York, NY, USA: Association for Computing Machinery, 2017, pp. 55–56. doi:

10.1145/3135932.3135941.

[26] J. A. Prenner, H. Babii, and R. Robbes, “Can OpenAI’s Codex Fix Bugs?: An evaluation

on QuixBugs,” in 2022 IEEE/ACM International Workshop on Automated Program

Repair (APR), 2022, pp. 69–75. doi: 10.1145/3524459.3527351.

[27] D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An Analysis of the Automatic Bug

Fixing Performance of ChatGPT,” in 2023 IEEE/ACM International Workshop on

Automated Program Repair (APR), Los Alamitos, CA, USA: IEEE Computer Society,

May 2023, pp. 23–30. doi: 10.1109/APR59189.2023.00012.

[28] Y. Charalambous, N. Tihanyi, Y. Sun, M. A. Ferrag, and L. Cordeiro, “A New Era in

Software Security: Towards Self-Healing Software via Large Language Models and

Formal Verification.” Jan. 2023. doi: 10.48550/arXiv.2305.14752.

[29] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Examining Zero-Shot

Vulnerability Repair with Large Language Models,” in 2023 IEEE Symposium on

Security and Privacy (SP), 2023, pp. 2339–2356. doi:

10.1109/SP46215.2023.10179324.

[30] N. Nashid, M. Sintaha, and A. Mesbah, “Retrieval-Based Prompt Selection for Code-

Related Few-Shot Learning,” in 2023 IEEE/ACM 45th International Conference on

Software Engineering (ICSE), 2023, pp. 2450–2462. doi:

10.1109/ICSE48619.2023.00205.

D3.1: AI-driven self-testing and automatic error correction for robustness 96

[31] C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in the era of large pre-

trained language models,” in Proceedings of the 45th International Conference on

Software Engineering (ICSE 2023). Association for Computing Machinery, 2023.

[32] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing faults to enable

controlled testing studies for Java programs,” in Proceedings of the 2014 international

symposium on software testing and analysis, Jan. 2014, pp. 437–440. doi:

10.1145/2610384.2628055.

[33] C. Le Goues et al., “The ManyBugs and IntroClass Benchmarks for Automated Repair

of C Programs,” IEEE Transactions on Software Engineering, vol. 41, no. 12, pp. 1236–

1256, 2015, doi: 10.1109/TSE.2015.2454513.

[34] C. S. Xia and L. Zhang, “Less Training, More Repairing Please: Revisiting Automated

Program Repair via Zero-Shot Learning,” in Proceedings of the 30th ACM Joint

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering, in ESEC/FSE 2022. New York, NY, USA: Association for

Computing Machinery, 2022, pp. 959–971. doi: 10.1145/3540250.3549101.

[35] Y. Wu et al., “How Effective Are Neural Networks for Fixing Security Vulnerabilities,”

Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing

and Analysis, 2023, [Online]. Available:

https://api.semanticscholar.org/CorpusID:258967736

[36] Q.-C. Bui, R. Scandariato, and N. E. D. Ferreyra, “Vul4J: A Dataset of Reproducible

Java Vulnerabilities Geared towards the Study of Program Repair Techniques,” in

Proceedings of the 19th International Conference on Mining Software Repositories, in

MSR ’22. New York, NY, USA: Association for Computing Machinery, 2022, pp. 464–

468. doi: 10.1145/3524842.3528482.

[37] M. Tufano, D. Drain, A. Svyatkovskiy, S. K. Deng, and N. Sundaresan, “Unit Test Case

Generation with Transformers and Focal Context,” Sep. 2020, [Online]. Available:

http://arxiv.org/abs/2009.05617

[38] M. Schäfer, S. Nadi, A. Eghbali, and F. Tip, “An Empirical Evaluation of Using Large

Language Models for Automated Unit Test Generation,” Feb. 2023, [Online]. Available:

http://arxiv.org/abs/2302.06527

[39] M. L. Siddiq, J. C. S. Santos, R. H. Tanvir, N. Ulfat, F. Al Rifat, and V. C. Lopes, “An

Empirical Study of Using Large Language Models for Unit Test Generation,” Apr. 2023,

[Online]. Available: http://arxiv.org/abs/2305.00418

[40] D. Sobania, M. Briesch, and F. Rothlauf, “Choose Your Programming Copilot: A

Comparison of the Program Synthesis Performance of Github Copilot and Genetic

Programming,” in Proceedings of the Genetic and Evolutionary Computation

Conference, in GECCO ’22. New York, NY, USA: Association for Computing

Machinery, 2022, pp. 1019–1027. doi: 10.1145/3512290.3528700.

[41] N. Al Madi, “How Readable is Model-Generated Code? Examining Readability and

Visual Inspection of GitHub Copilot,” in Proceedings of the 37th IEEE/ACM

International Conference on Automated Software Engineering, in ASE ’22. New York,

NY, USA: Association for Computing Machinery, 2023. doi:

10.1145/3551349.3560438.

[42] T. Helmuth and P. Kelly, “PSB2: The Second Program Synthesis Benchmark Suite,” in

2021 Genetic and Evolutionary Computation Conference, in GECCO ’21. Lille, France:

Association for Computing Machinery, Jan. 2021. doi: 10.1145/3449639.3459285.

[43] “7 AI-Powered Test Automation Tools That You Should Know in 2023.” [Online].

Available: https://www.linkedin.com/pulse/7-ai-powered-test-automation-tools-you-

should/

[44] OWASP, “OWASP Benchmark.” Accessed: Jan. 22, 2024. [Online]. Available:

https://owasp.org/www-project-benchmark/

D3.1: AI-driven self-testing and automatic error correction for robustness 97

[45] J. C. King, “Symbolic Execution and Program Testing,” Commun ACM, vol. 19, no. 7,

pp. 385–394, Jul. 1976, doi: 10.1145/360248.360252.

[46] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT – a Formal System for Testing and

Debugging Programs by Symbolic Execution,” in Proceedings of the International

Conference on Reliable Software, ACM, 1975, pp. 234–245. doi:

10.1145/800027.808445.

[47] P. D. Coward, “Symbolic Execution Systems – a Review,” Software Engineering

Journal, vol. 3, no. 6, pp. 229–239, Nov. 1988, doi: 10.1049/sej.1988.0029.

[48] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed Automated Random Testing,”

in Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language

Design and Implementation, in PLDI ’05. ACM, 2005, pp. 213–223. doi:

10.1145/1065010.1065036.

[49] K. Sen and G. Agha, “CUTE and jCUTE: Concolic Unit Testing and Explicit Path

Model-checking Tools,” in Proceedings of the 18th International Conference on

Computer Aided Verification, in CAV’06. Springer-Verlag, 2006, pp. 419–423. doi:

10.1007/11817963_38.

[50] R. Majumdar and K. Sen, “Hybrid concolic testing,” in Proceedings - International

Conference on Software Engineering, 2007, pp. 416–425. [Online]. Available:

www.scopus.com

[51] C. Cadar, D. Dunbar, D. R. Engler, and others, “KLEE: Unassisted and Automatic

Generation of High-Coverage Tests for Complex Systems Programs.,” in OSDI, 2008,

pp. 209–224.

[52] F. Mues Malte and Howar, “JDart: Dynamic Symbolic Execution for Java Bytecode

(Competition Contribution),” in Tools and Algorithms for the Construction and Analysis

of Systems, Springer International Publishing, 2020, pp. 398–402.

[53] J. He, G. Sivanrupan, P. Tsankov, and M. T. Vechev, “Learning to Explore Paths for

Symbolic Execution,” in Proceedings of the 2021 ACM SIGSAC Conference on

Computer and Communications Security, ACM, 2021, pp. 2526–2540.

[54] K. Havelund and T. Pressburger, “Model checking JAVA programs using JAVA

PathFinder,” International Journal on Software Tools for Technology Transfer, vol. 2,

no. 4, pp. 366–381, 2000, doi: 10.1007/s100090050043.

[55] C. S. Păsăreanu and N. Rungta, “Symbolic PathFinder: Symbolic Execution of Java

Bytecode,” in Proceedings of the IEEE/ACM International Conference on Automated

Software Engineering, in ASE ’10. ACM, 2010, pp. 179–180. doi:

10.1145/1858996.1859035.

[56] M. Souza, M. Borges, M. D’Amorim, and C. S. Păsăreanu, “CORAL: Solving complex

constraints for symbolic pathfinder,” in Lecture Notes in Computer Science, vol. 6617

LNCS, Springer, Berlin, Heidelberg, 2011, pp. 359–374. doi: 10.1007/978-3-642-

20398-5_26.

[57] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A Survey of

Symbolic Execution Techniques,” arXiv preprint arXiv:1610.00502, 2016.

[58] A. Amighi, P. de C. Gomes, D. Gurov, and M. Huisman, “Provably correct control flow

graphs from Java bytecode programs with exceptions,” International Journal on

Software Tools for Technology Transfer, vol. 18, no. 6, pp. 653–684, 2016, doi:

10.1007/s10009-015-0375-0.

[59] T. and P. D. Demange Delphine and Jensen, “A Provably Correct Stackless Intermediate

Representation for Java Bytecode,” in Programming Languages and Systems, K. Ueda,

Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 97–113.

[60] A. Viet Phan, M. Le Nguyen, and L. Thu Bui, “Convolutional Neural Networks over

Control Flow Graphs for Software Defect Prediction,” in 2017 IEEE 29th International

D3.1: AI-driven self-testing and automatic error correction for robustness 98

Conference on Tools with Artificial Intelligence (ICTAI), 2017, pp. 45–52. doi:

10.1109/ICTAI.2017.00019.

[61] “The SourceMeter Home Page.” [Online]. Available: https://www.sourcemeter.com

[62] I. Kádár, P. Hegedűs, and R. Ferenc, “Runtime exception detection in Java programs

using symbolic execution,” Acta Cybernetica, vol. 21, no. 3, pp. 331–352, 2014,

[Online]. Available: www.scopus.com

[63] D. A. Ramos and D. Engler, “Under-Constrained Symbolic Execution: Correctness

Checking for Real Code,” in 24th USENIX Security Symposium (USENIX Security 15),

USENIX Association, 2015, pp. 49–64. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity15/technical-

sessions/presentation/ramos

[64] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy, “Columbus Reverse

Engineering Tool and Schema for C++,” in Proceedings of the 18th International

Conference on Software Maintenance (ICSM02), IEEE Computer Society, Oct. 2002,

pp. 172–181.

[65] F. E. Allen, “Control Flow Analysis,” SIGPLAN Not., vol. 5, no. 7, pp. 1–19, Jul. 1970,

doi: 10.1145/390013.808479.

[66] R. J. Vanderbei, Linear programming - foundations and extensions, vol. 4. in Kluwer

international series in operations research and management service, vol. 4. Kluwer,

1998.

[67] J. C. Nash, “The (Dantzig) Simplex Method for Linear Programming,” Computing in

Science and Eng., vol. 2, no. 1, pp. 29–31, 2000.

[68] A.~Townsend, “Top 10 algorithms from the 20th century.” 2016. [Online]. Available:

https://pi.math.cornell.edu/~ajt/presentations/TopTenAlgorithms.pdf

[69] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman, 1979.

[70] S. A. Cook, “The Complexity of Theorem-Proving Procedures,” Logic, Automata, and

Computational Complexity: The Works of Stephen A. Cook, vol. 43, pp. 143–152, 2023.

[71] B. A. Trakhtenbrot, “A Survey of Russian Approaches to Perebor (Brute-Force

Searches) Algorithms,” IEEE Ann. Hist. Comput., vol. 6, no. 4, pp. 384–400, 1984.

[72] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of Satisfiability -

Second Edition, vol. 336. in Frontiers in Artificial Intelligence and Applications, vol.

336. IOS Press, 2021.

[73] M. Heule, “Introduction to Mathematics of Satisfiability, Victor W. Marek, Chapman &

Hall/CRC, 2009. Hardback, ISBN-13: 978-143980167-3, 89.95,” Theory Pract. Log.

Program., vol. 11, no. 1, pp. 126–130, 2011.

[74] L. M. de Moura, “Invited talk: Developing Efficient SMT Solvers,” Proceedings of the

CADE-21 Workshop on Empirically Successful Automated Reasoning in Large

Theories, Bremen, Germany, 17th July 2007, vol. 257, 2007.

[75] N. S. Bjørner, “SMT Solvers for Testing, Program Analysis and Verification at

Microsoft,” 11th International Symposium on Symbolic and Numeric Algorithms for

Scientific Computing, SYNASC 2009, Timisoara, Romania, September 26-29, 2009, p.

15, 2009.

[76] J. Vanegue and S. Heelan, “SMT Solvers in Software Security,” 6th USENIX Workshop

on Offensive Technologies, WOOT’12, August 6-7, 2012, Bellevue, WA, USA,

Proceedings, pp. 85–96, 2012.

[77] Z. Chen et al., “Synthesize Solving Strategy for Symbolic Execution,” Proceedings of

the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis,

pp. 348–360, 2021.

[78] “The Yices SMT Solver.” [Online]. Available: https://yices.csl.sri.com/

D3.1: AI-driven self-testing and automatic error correction for robustness 99

[79] A. Cheshkov, P. Zadorozhny, and R. Levichev, “Evaluation of ChatGPT Model for

Vulnerability Detection.” 2023.

[80] Y. Deng, C. S. Xia, C. Yang, S. D. Zhang, S. Yang, and L. Zhang, “Large Language

Models are Edge-Case Fuzzers: Testing Deep Learning Libraries via FuzzGPT.” 2023.

[81] M. Omar, “Detecting software vulnerabilities using Language Models.” 2023.

[82] A. Tanwar, K. Sundaresan, P. Ashwath, P. Ganesan, S. K. Chandrasekaran, and S. Ravi,

“Predicting Vulnerability In Large Codebases With Deep Code Representation.” 2020.

[83] E. First, M. Rabe, T. Ringer, and Y. Brun, “Baldur: Whole-Proof Generation and Repair

with Large Language Models,” in Proceedings of the 31st ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering, in ESEC/FSE 2023. New York, NY, USA: Association for Computing

Machinery, 2023, pp. 1229–1241. doi: 10.1145/3611643.3616243.

[84] D. Noever, “Can Large Language Models Find and Fix Vulnerable Software?”

[85] Z. Gao, H. Wang, Y. Zhou, W. Zhu, and C. Zhang, “How Far Have We Gone in

Vulnerability Detection Using Large Language Models,” Nov. 2023, [Online].

Available: http://arxiv.org/abs/2311.12420

[86] A. Sabetta et al., “Known Vulnerabilities of Open-Source Projects: Where Are the

Fixes?”

[87] “AssureMOSS.” Accessed: Jan. 08, 2024. [Online]. Available: assuremoss.eu

[88] “JiraMiner dataset.” Accessed: Jan. 29, 2024. [Online]. Available:

10.5281/zenodo.10457999

[89] B. Henderson-Sellers, L. L. Constantine, and I. M. Graham, “Coupling and cohesion

(towards a valid metrics suite for object-oriented analysis and design),” Object Oriented

Syst., vol. 3, pp. 143–158, 1996, [Online]. Available:

https://api.semanticscholar.org/CorpusID:40937518

[90] “Vul4J.” Accessed: Jan. 05, 2024. [Online]. Available: https://github.com/tuhh-

softsec/vul4j

[91] “MSR-20.” Accessed: Jan. 05, 2024. [Online]. Available:

https://github.com/ZeoVan/MSR_20_Code_vulnerability_CSV_Dataset/tree/master

