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Executive Summary 

This document is deliverable D3.1 AI-driven self-testing and automatic error correction for 

robustness – Initial version of AI4CYBER project. 

The deliverable presents the outcomes of tasks T3.1 and T3.2 of WP3 “AI-driven Preparedness 

for Robustness”, captured in the form of two key exploitable result prototypes, AI4FIX and 

AI4VULN, respectively. 

Task 3.1 studies the “AI-driven self-testing and automatic error correction” and led by SLAB 

focuses on utilizing advanced AI technologies, such as large language models, to automate the 

correction of robustness-related weaknesses in software code. This task involves creating a 

repository of datasets from various open-source software development records, spanning 

decades. It aims to analyze these datasets to track software evolution, identify and correct 

vulnerabilities - a step beyond the capabilities of current code analysis tools. The key objective 

is to enable automatic code corrections without relying solely on human intervention. 

Additionally, Task 3.1 will develop AI-based methods to generate unit tests and automatically 

validate the modified system, ensuring thorough re-testing post-correction. These developments 

are integral to the AI4FIX system, enhancing automated software maintenance and quality 

assurance." 

Task 3.2 deals with the challenges of “AI-enhanced Vulnerability identification” and led by 

FEA aimed to develop an AI-boosted symbolic execution technique, named AI4VULN, 

designed to efficiently discover vulnerabilities in source code. This approach involves the 

creation of machine learning models capable of discerning which execution paths in the code 

can be truncated or omitted, particularly those less likely to contain vulnerabilities. This strategy 

aims to reduce the overall state space, enabling the symbolic execution to focus more 

intensively on paths that have a higher likelihood of security issues. By optimizing the symbolic 

execution process through AI, the task seeks to enhance the effectiveness and depth of security 

analysis in source code. 

The document describes the research directions, architectural design, specification, proof of 

concept tests and initial versions of the AI4FIX and AI4VULN components that will be fully 

developed and implemented thorough the project. 

The implementation of the models is a work in progress. Proof of concept testing with the 

collected datasets were conducted using third party online models. 
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1 Introduction 

1.1 Objective of the document 

This document is deliverable D3.1 AI-driven self-testing and automatic error correction for 

robustness – Initial version of AI4CYBER project [1]. 

The document describes the research directions, plans and initial versions of the prototype 

implementation of both the AI4FIX component aimed at automatic correction of robustness 

related weaknesses and the AI boosted vulnerability identification component, AI4VULN, both 

part of AI4CYBER framework. 

1.2 Structure of the document 

After the introductory Section 1, Section 2 describes the AI4FIX component, the related State 

of the Art, research results and architecture and plans for the implementation. Section 3 

describes the AI4VULN component following the same structure. Finally, Section 4 

summarizes the document and provides future directions of research and prototype 

implementation. 

1.3 Relationships with other deliverables 

The initial tool descriptions presented in the present document relate to the following 

deliverables: 

• D2.1 AI4CYBER Framework Use cases, Requirements and Architecture – Initial 

Version: This deliverable provided the specification of the AI4CYBER framework, 

including the description of the overall architecture and multiple viewpoints of the 

framework solution. The document presented the high-level design of the framework 

components, including both AI4FIX and AI4VULN detailed herein. The present 

deliverable provides more technical information of the initial prototypes of both 

components.  

• D3.3 AI-driven self-testing and automatic error correction for robustness – Final 

version: this document will present the implemented final versions of the AI4FIX and 

AI4VULN components. The tools will be demonstrated in the context of WP7, in the 

Use case 2 banking applications. 

1.4 Contributors 

The following partners have mainly contributed to this deliverable, with the support of other 

partners in WP3: 

• SLAB has coordinated the work in WP3 and has led the edition of the document. 

Furthermore, SLAB has led the work in AI4VULN component specification, design and 

prototype development. 

• FEA has focused their contribution on the specification, design and development of AI4FIX 

component. 

1.5 Acronyms and abbreviations 

API Application Programming Interface LOC Lines of Code 
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APR Automatic Program Repair LoC Lines of Code 

AST Abstract Syntax Tree LP Linear Programming 

BB Basic Block NP Nondeterministic Polynomial 

CFG Control Flow Graph npm Node Package Management 

CWE Common Weakness Enumerations RAG Retrieval Augmented Generation 

DGRNN Deep general regression neural network SMT Satisfiability Modulo Theories 

FDSS Feedback-Driven Solution Synthesis TOC Table of Contents 

FP False Positive ToE Target of Evaluation 

GPT Generative Pre-Trained Transformer TP True Positive 

LLM Large Language Model WP Work Package 

1.6 Revision history 

Version Date issued Author Organisation Description 

0.1 18/01/2023 Ákos 

Milánkovich 

SLAB TOC revised agreed 

0.3 08/09/2023 Ákos 

Milánkovich 

SLAB Initial version 

0.5 15/09/2023 Ákos 

Milánkovich, 

Istvan Siket 

SLAB, FEA Intermediate version 

0.7 15/12/2023 Ákos 

Milánkovich,  

Istvan Siket  

SLAB, FEA Both components integrated draft 

0.9 12/01/2024 Ákos 

Milánkovich 

SLAB Version for internal review- 

0.9.1 19/01/2024 Marek 

Pawlicki 

ITTI Reviewed version 

0.9.2 23/01/2024 Ana Rosa 

Cavalli  

MI Reviewed version 

0.9.3 29/01/2024 Ákos 

Milánkovich 

SLAB Final formatting, improvements 

based on review 

1.0 31/01/2024 Erkuden Rios TECNALIA Final submitted 
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2 AI4FIX Architectural Design & Implementation – Initial 

Version 

This section describes the initial architecture and implementation of AI4FIX based on the state-

of-the-art research results. 

2.1 AI4FIX – State of the Art Analysis 

This section provides the state-of-the-art analysis about AI-based robustness improvements, 

code, and fix generation techniques, in relation to AI4FIX. 

2.1.1 Robustness improvements 

In the dynamic landscape of software development, ensuring robustness improvements is 

paramount to building resilient and trustworthy applications. Recent advancements in the realm 

of artificial intelligence (AI), particularly Large Language Models (LLMs), have opened new 

avenues for fortifying the integrity of software systems. Leveraging the capabilities of LLMs 

offers a promising approach to enhance robustness improvements in terms of security. 

Within the context of software system or application development, robustness improvement is 

a critical consideration for ensuring the security and resilience of the source code. Leveraging 

Large Language Models (LLMs) to enhance the robustness of source code involves several key 

aspects. 

One of them is the security best practices and guidelines which serve as foundational pillars in 

the endeavor to fortify the robustness of the source code. By integrating these principles, 

developers can establish a secure coding framework that mitigates potential vulnerabilities. 

Another facet of robustness improvement involves advocating for more widespread and/or 

specific error handling mechanisms within the source code. This ensures that potential issues 

are not only identified but are also addressed comprehensively, contributing to the overall 

reliability and security of the software. 

Additionally, employing different static analyzer tools is instrumental in identifying and 

rectifying bugs within the source code. These tools systematically analyze the codebase, 

uncovering issues that may range from common programming errors to intricate security 

vulnerabilities. By proactively addressing these findings, developers strengthen the robustness 

of the source code against potential exploits. 

2.1.1.1 Literature review 

A recent study [2] about code generation with LLMs particularly focusing on their capabilities 

and limitations in handling security issues and generating secure code. The study introduces an 

approach called Feedback-Driven Solution Synthesis (FDSS), where LLMs receive varied 

feedback to generate solutions for security problems. The datasets used for evaluation include 

LLMSecEval, SecurityEval, and PythonSecurityEval. These datasets are designed to test LLMs' 

abilities in generating secure source code and include a range of Common Weakness 

Enumerations (CWEs). As the study emphasized, LLMs often struggle with security issues due 

to limited understanding of security vulnerabilities. Therefore, it explores how LLMs generate 

code with security issues and their capability to resolve these issues through self-refining or 

using feedback from external tools like Bandit, a static code analysis tool for Python. Within 

the FDSS approach the Bandit static analyzer tool was used as a key component to enhance the 

security capabilities of LLMs. It was utilized as a feedback source as it analyzes the code 



D3.1: AI-driven self-testing and automatic error correction for robustness 12 

 

 

 

generated by the LLMs and identifies potential security vulnerabilities. The feedback includes 

the type of security issue and the specific line of code where the issue is found. This information 

is crucial for the models to understand the nature of the security issues and to generate possible 

solutions for resolving them. In addition to direct feedback, the study also explores the 

verbalization technique, where Bandit's feedback is transformed into a detailed explanation in 

natural language. This expanded explanation from Bandit is then provided to the LLMs, which 

helps them gain deeper insights into the security problems and suggests methods for resolving 

them. The approach also involves an iterative process where the LLMs use Bandit's feedback 

to refine and improve the generated code. Each proposed solution, along with feedback from 

Bandit, is sent back to the model for further refinement, aiming to address and resolve the 

security issues effectively. 

The FDSS approach demonstrates that LLMs can generate solutions to address security issues 

effectively. The study evaluates the abilities of advanced LLMs, including GPT-4, GPT-3.5, 

and CodeLlama, using various baseline techniques. The results show that GPT-4 has the highest 

percentage of refining security issues in all datasets, exceeding 90%. The study also finds that 

the self-debugging approach is less effective for GPT-3.5 and CodeLlama compared to direct 

prompting but enhances performance in GPT-4. 

In another study [3], which focuses on enhancing program repair using Large Language Models 

(LLMs) together with static analysis tools. The primary objective was to enhance the 

capabilities of LLMs in program repair, focusing on fixing critical bugs like Null Pointer 

Dereference (NPD), Resource Leak (RL), and Thread Safety Violation. The study explores how 

to leverage static analysis for bug detection, localization, and categorization, paired with LLMs 

fine-tuned for the program repair task. As a result, a new framework called InferFix was 

introduced which employs the Infer static code analyzer and transformer encoder model with a 

Codex Cushman generator model. The Codex model is fine-tuned using the InferredBugs 

dataset, enriched with relevant program repair patterns. The dataset is a metadata-rich collection 

of bugs and fixes in Java and C# programming languages extracted using the Infer static 

analyzer. This dataset is differentiated by the detailed information provided about each bug, 

including bug type, location, and change history. The InferFix framework can identify critical 

security and performance issues in the code and with the help of prompt augmentation can 

generate fixes for the relevant code parts. The prompt augmentation technique is leveraging on 

the dense retrieval from an external database of historic bugs and fixes, bug type annotations, 

and syntactic hierarchies. Altogether InferFix achieves impressive top-1 accuracy of patch 

generation, with 76% in Java and over 65% in C# across the various bug types. 

Updating outdated third-party libraries is another crucial aspect of robustness improvement in 

our approach. As technology evolves, so do potential threats and vulnerabilities. Regularly 

refreshing dependencies to their latest versions not only introduces performance enhancements 

but also addresses security patches, safeguarding the source code against potential exploits 

associated with outdated components. 

In addition to the techniques, robustness improvement also implies the possibility to generate 

patches for code parts that are not vulnerable or not exploitable just like for example in the case 

of an SQL query in the source code. Even when a vulnerability in a native SQL query may not 

contain security relevant bug, or cannot be exploitable, adopting a more robust approach, such 

as utilizing parameterized SQL queries, is recommended. This proactive measure ensures the 

source code is fortified against potential security threats. 
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In conclusion, the application of LLMs for robustness improvement in the source code of 

software systems or applications involves a comprehensive strategy. From adhering to security 

best practices to advocating for improved error handling, leveraging static analyzers, and 

updating third-party libraries, developers can fortify the security and resilience of the source 

code. However, as our research shows, currently in the time of writing this document, there are 

no available studies that explicitly research the possibilities of robustness improvements of the 

source code with the help of LLMs. The ones that we found are partially utilizing the different 

techniques of robustness improvements, but not in accordance with our specific definition of 

robustness improvements. 

2.1.2 Software evolution 

This section delves into the state-of-the-art solutions for software evolution in source code 

through the application of AI. The focus spans various dimensions, including refactoring 

prediction, anti-pattern detection, latent topic analysis, commit-impact analysis, defect density 

prediction, and change-related prediction. While acknowledging the role of Large Language 

Models (LLMs), this review extends its scrutiny to encompass a spectrum of AI-driven 

approaches, elucidating the diverse methodologies that shape contemporary efforts in software 

evolutions. 

Table 1: Goals of software evolution approaches 

Goal Reference 

Refactoring prediction [4] [2] [3] 

Anti-pattern detection [4] 

Analysis of latent topics [5] 

Commit-impact analysis [6] 

Defect (density) prediction [7] [8] [9] [10] 

Change-related prediction [11] [12] 

2.1.2.1 Refactoring prediction 

Refactoring aims at improving the design of a software system without changing its behavior. 

In [4] the focus was on the prediction of refactoring-prone classes based on several historical 

code metrics. The number of refactoring is predicted with a classed classifier, first classifying 

whether a class needs refactoring, then predicting whether it is 1 or more than 1. The refactoring 

was identified based on information gathered from commit messages, but the different types of 

refactoring were not differentiated (e. g. create superclass, extract method were treated as a 

refactoring operation). 80% precision and recall were achieved for predicting non-refactoring 

prone classes, it was also observed that classes with refactoring are harder to predict. Selection 

of the timeframe is essential; predicting the refactoring that will happen in the following 2 

months based on the previous 3 months yielded better results than the predictions based on the 

previous 6 months. The most important features were coChangedNew, linesActivityRate, 

coChangedFiles, linesChangePerChange. 

Refactoring datasets are often imbalanced, meaning that there are far fewer instances of 

refactored classes than non-refactored classes. In [5], prediction results on imbalanced and 

balanced datasets were discussed, where the latter was acquired using Synthetic Minority Over-

sampling Technique. The task was to predict whether a class was refactored based on the current 

version based on the previous version’s code metrics. An F-measure of over 92% percent was 

obtained on every software project with a balanced dataset. 
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The previous approaches focused on predicting whether a class (or code segment) needs 

refactoring but did not predict what type of refactoring operation is needed. In [6], several 

supervised machine learning algorithms predict 7 class levels, 7 method levels and 6 variable 

levels refactoring based on several code, process and ownership metrics collected from the 

previous commit. A different model was trained for each refactoring operation, where for every 

operation, the Random Forest model performed best, with over 84% percent accuracy (but often 

above 90%). This shows that refactoring prediction/recommendation is possible with high 

accuracy. However, the exact location of the refactoring operations is unknown. Other 

observations were that class-level metrics were important for lower level (i.e., method and 

variable) refactoring and that process and ownership metrics played a crucial role. 

2.1.2.2 Anti-pattern detection 

Over the evolution of a software system, if it is not maintained correctly, design problems, such 

as anti-patterns can occur. Anti-patterns are closely tied to refactoring operations. An individual 

anti-pattern can be removed by a series of refactoring operations. It works in the other direction 

as well; an occurrence of an anti-pattern may be detected by suggested refactoring operations. 

(For example, multiple Extract Method operations may indicate a God Class [7].)  

In [4], the aim was to detect the God Class anti-pattern based on the evolution of structural code 

metrics. There are metrics, such as lack of cohesion in methods, which could indicate a God 

Class. The F-measure of the proposed convolutional approach was 77% on a highly imbalanced 

dataset, which was higher than the analyzed previous approaches. An observation is that a 

higher performance can be achieved by using longer metrics histories. 

2.1.2.3 Analysis of latent topics 

Source code can be viewed as a text corpus, where the tokens are analogous to words [8]. LDA 

(Latent Dirichlet Allocation) was utilized to extract latent topics (in this domain same as 

concept of concerns) from tokenized Java source code. Each concern is represented with five 

words. The evolution of each topic can be analyzed over software versions. Over time, based 

on the topic assignments, the emergence of functionalities and design improvements can be 

analyzed. 

2.1.2.4 Commit-impact analysis 

Commit-impact analysis revolves around how an individual commit influences software quality 

[9]. An “impactful commit” is defined as a commit, which changed the main module of the 

system. Several problems could cause an impactful commit not to compile, such as, snapshot 

dependencies, missing dependencies, committing without compiling in the new environment, 

committing too early, committing too often, design changes, code cleanups, large refactorings. 

The following code metric changes were observed: 70% of commits change the lines of code, 

35% change the number of functions, and 17% change the number of classes. About 53% of 

commits change the complexity metric and about 46% introduce new code smells. In most 

cases, security-relevant impactful commits were below 5% of all impactful commits.  

2.1.2.5 Defect density prediction 

Defect density is a software quality metric, which measures the number of defects per software 

module, often in terms of Lines of Code (LOC), i. e. the number of bugs divided by LOC [10]. 

Defect density prediction is about predicting the number of defects per module size, which is 

different from defect prediction, which is a classification problem, which is about determining 
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whether a program module is defective or not. The data used in this case is often sparse due to 

the size of modules, where bugs are absent. The proposed DGRNN (Deep general regression 

neural network) achieved low errors on predicting defect density from code metrics compared 

to other models. 

2.1.2.6 Defect prediction 

In [11], a framework was proposed for identifying error prone modules based on code metrics 

(Halstead, McCabe [[11]). This task involves classifying modules into two categories (fault-

prone and non-fault-prone). A module was deemed fault-prone if it contained one or more 

errors. 22 classification models were employed and compared. The importance of the chosen 

model may be overestimated. Most classifiers had over 70% AUC on most of the datasets. 

A similar bug prediction was discussed in [12], where 3 supervised models were utilized. In the 

dataset, already known and fixed bugs were matched with their respective source code elements 

and the metrics were calculated on those. 

A different approach to bug prediction is to classify changes (commits) into two classes, 

introducing commits and “clean” commits [13]. The approach proposed in [13] uses change 

deltas (e.g., added code delta, deleted code delta) represented as bag of words vectors, change 

log, metadata, and other code metrics to classify the commits into the mentioned categories. It 

was found that using fewer features leads to better results. The best model achieved 0.81 and 

0.94 F-measure on the buggy and clean classes, respectively, averaged over all the used 

projects.  

2.1.2.7 Change-related prediction 

Changes in the source code can be categorized into structural and non-structural changes, where 

structural changes affect the compiled code [13]. Each change can be assigned a change cost. 

In [14], it was investigated which object-oriented metrics have a high correlation with change-

proneness. The object-oriented metrics for each class in a project are further processed into 

class metric rank lists and a combined rank list. The top 10% of classes in the combined rank 

list are deemed as change prone. WMC, LOC, RFC, NOM were found to have a high correlation 

with change-proneness, both individually and combined: 

• WMC (Weight Method Class) or McCabe's complexity. It counts the number of 

branch instructions in a class. 

• LOC (Lines of code): It counts the lines of count, ignoring empty lines and comments 

(i.e., it is Source Lines of Code, or SLOC). The number of lines here might be a bit 

different from the original file, as we use JDT's internal representation of the source 

code to calculate it. 

• RFC (Response for a Class): Counts the number of unique method invocations in a class. 

As invocations are resolved via static analysis, this implementation fails when a method 

has overloads with the same number of parameters, but different types. 

• NOM (Number of methods): Counts the number of methods. Specific numbers for total 

number of methods, static, public, abstract, private, protected, default, final, and 

synchronized methods. Constructor methods also count here. 

 

The authors of [15] proposed new metrics to measure how classes co-change (co-evolve). 

Proximity of a pair of classes measures the frequency of their co-change (i.e., the number of 

commits where both classes changed divided by the number of commits where either of the two 

are changed.). The Change-Coupling Index of a class captures the change-coupling of a given 
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class with the rest of the software system. Class Change-Impact-Set is a set of classes for a 

given class, which are co-changed with other that given class. The latter can be used to predict 

the ripple effect on the entire system by the onset of changing a class. It was observed that class 

change-coupling can be predicted by past Change-Coupling Indices and that Change-Coupling 

Index captures structural dependency among classes but also discovers some hidden 

dependencies as well. 

2.1.2.8 Datasets 

Predominantly open-source Java projects, whose histories and commit information are mined 

from CVS, SVN, or GitHub repositories. In some instances, the authors used previously mined 

datasets, but extracted different features. 

Table 2: Datasets for software evolution 

Name Comment Usage 

ArgoUML   [4] [4] [5] 

Spring   [4] 

Eclipse   [5] [13] 

Apache projects 38 projects [6] 

844 Java projects [3] 

Ant, Lucene, Tomcat, Xerces [4] 

Apache 1.3 [13] 

Android API 

 (Android Opt Telephony, 

 Android Support) 

  [4] 

JEdit   [4] [13] 

AEEEM, SOFTLAB, 

MORPH repositories 

in total 28 datasets collected from these 

repositories 

[7] 

NASA MDP, JM1, KC1 8 datasets from NASA MDP repository, and 

two additional datasets 

[8] 

JFreeChart, Yari, 

UCDEtector 

  [14] 

ANTLR4, JUnit, Mapdb, 

McMMO, Mct, Oryx, Titan 

  [2] 

EGit, JGit, Emma, Jpf collected using SVNSearch [15] 

F-Droid projects 1233 projects [3] 

GitHub projects 9072 out of 10000 most starred Java projects [3] 

Columba, Gaim, GForge, 

Mozilla, Plone, PostgreSQL, 

Subversion, JCP 

  [13] 

A new dataset of 46 open-source Java projects was built and discussed in [13]. 

Some papers may use similar projects, but the mined timeframe or features are often different. 

For example, in [14], the number of change requests was mined from the issue-tracker. 

19580 commits from 38 Apache Java projects were mined and analyzed in [6]. The projects 

that did not have an update in 2017 and projects having fewer than 3000 commits were left out. 
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The exact projects were not mentioned in [9], only the fact that 15 Java and Python projects 

were selected from GitHub. 

2.1.2.9 Features/metrics 

Several features have been used as input for models. Various metrics exist which relate to the 

size of the source code, OO attributes, developer ownership and habits, complexity, code 

quality, security violations, or the number of change requests. Even the vectorized source code 

(e.g., as a BOW vector) was used as a feature for prediction. 

The different source code metrics are applicable to different levels (project, method, file, class, 

method, line). For example, OO metrics, such as Cohesion among methods or Number of 

children, measure qualities for a given class. 

Part of the metrics focus on the commits and measure, for example, the number of added or 

deleted lines. In some cases, the metrics are applied on the change deltas (e. g. the number of 

changes lines, the source code BOW vector difference). 

Change metrics (e.g., Change-Coupling Index, Class Change-Impact-Set) can capture how an 

individual class relates to other classes in the whole project. Therefore, all the commits made 

in each timeframe are used to calculate them. 

Metric suites also exist (e.g., McCabe metrics, Halstead metrics), whose parts or entirety are 

widely used in several applications. 

Table 3: Metrics for software evolution 

Category Metric Usage Description 

Size linesAdded 

linesModified 

linesDeleted 

linesType 

largeChanges 

smallChanges 

[4] For each file, within the 

inspected period. 

linedAdded, linesModified, 

linesDeleted relative to total 

LOC. 

linesType means whether there 

are more added or modified 

files. largeChanges and 

smallChanges refer to double or 

half of the average change sizes, 

respectively. 

Lines of Code 

variants: with/without 

whitespace and comments, 

only code, only comments, 

only blank, only executable, 

total 

[4] [6] [4] 

[8] [14] 

[3] 

The widely used metric for 

measuring the size of a file/class 

in terms of source code lines. 

Number of functions/ 

Number of methods 

(declared) (NMD/NOM) 

[6] [4] [9] 

[14] 

Number of functions/methods in 

a class. Often inner classes are 

ignored. 

Number of classes (NOC) [6] [9] Often inner classes are ignored. 

NAD (Number of 

attributes/fields declared) 

[4] [14] Often inner classes are ignored. 
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Category Metric Usage Description 

NBI (Number of Byte-code 

instructions) 

IPC (Instructions per 

method) 

[9] Different approach to measure 

size instead of measuring only 

the lines of code.  

OO metrics ATFD (Access to foreign 

data) 

NADC (Number of 

associated data classes) 

[4] ATFD: number of distinct 

accessed attributes of unrelated 

classes. 

Lack of cohesion in Methods 

(LCOM) 

[4] [9] 

[14] 

Based on the attributes accessed 

by each method. 

Coupling Between Objects 

(CBO) 

[9] [14]   

Number of children (NOCH) 

Depth of inheritance tree 

(DIT) 

Percent Public Instance 

Variables (PPIV) 

Access to Public data (APD) 

[9]   

CAM (Cohesion among 

methods) 

RFC (Response for a class) 

[14]   

Team authorCount 

changeCount 

authorSwitches 

authorMatch 

[4] Number of authors working on a 

file, how often they switch. 

authorMatch refers to the people 

assigned to an issue and the 

actual people contributing to the 

implementation of the issue 

Code 

ownership 

quantity of authors 

minor authors 

major authors 

author ownership 

[3] Authors who contributed less 

than 5% are considered minor, 

all the others are considered 

major. Author ownership 

measures the proportion of 

commits made by the most 

active developer. 

Work habits addingChanges 

modifyingChanges 

deletingChanges 

per author per file 

[4] Developer work habits per 

author per file. 

Complexity changeCount 

changeActivityRate 

linesActivityRate 

bugfix size metrics 

[4] Number of changes/lines 

relative to the lifetime measured 

in months. 

Bugfix metrics are the same as 

size metrics. 

Number of paths through the 

code (CX) 

[6] Measured by SonarQube. 

Complexity is increased by one, 
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Category Metric Usage Description 

when the control flow splits 

(e.g., at an if statement). 

WMC (Weighted Method 

Count) 

[4] [9] 

[14] 

McCabe’s cyclomatic 

complexity summed up for all 

methods of a class. 

Cyclomatic complexity [9] Also called McCabe metric. 

Code 

quality 

Number of code smells 

PMD rule violations 

[6]   

Problem 

difficulty 

coChangeNew [4] How often a file was co-changed 

with a newly introduced another 

file. 

Relation of 

classes 

coChangedFiles [4] Count of co-changed files 

relative to the change count. 

Time 

constraints 

avgDaysBetweenChanges 

avgDaysPerLine 

relativePeakMonth 

peakChangeCount 

changeActivityRate 

linesActivityRate 

[4] Number of days between 

changes or per line of code. 

Peak month contains the most 

revisions. 

Number of changes/lines of 

code added relative to the 

months. 

Security SonarQube vulnerabilities 

PMD Security Code 

Guidelines violations 

FindBugs (Malicious 

Code/Security) 

[6] Number of issues found by the 

mentioned analyzer tools. 

Issue 

tracking 

Number of change requests [14] Based on the issue-tracker 

system. 

Change Change-Coupling Index 

(CChCI) 

Class Change-Impact-Set 

(ChImpactSet) 

[15] CChCI measures how often a 

class co-changes with other 

classes. 

ChImpactSet is a set of classes 

for a given class that change 

together. 

Process quantity of commits 

number of bugfixes 

number of previous 

refactoring operations 

[3]   

Text Source code BOW vector 

Directory/file names 

New revision source code 

Change log BOW vector 

[13] “Words” and operators 

represented as a BOW vector. 

In some cases, the deltas are 

considered for a given commit. 

Source code viewed as text [5]   
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Category Metric Usage Description 

Halstead 

metrics 

number of distinct operators 

number of distinct operands 

total number of operators 

total number of operands 

[7] [8]1 Introduced by Maurice Howard 

Halstead. Can be statically 

computed 

program vocabulary 

program length 

calculated estimated program 

length 

volume 

difficulty 

effort 

[7] [8]1 Derivate metrics calculated from 

each other or the other 4 

Halstead metrics. 

McCabe 

metrics 

  [7] [8]1 A metric suite consisting of 

complexity and data related 

metrics. 

CK metrics   [13] [3]2 A set of metrics calculated by 

the CK tool3. 

Android 

metrics 

Bad Smell Method Calls 

WakeLock with no timeout 

Number of Location 

Listeners 

Number of GPS Uses 

XML Parsers 

Network Timeouts 

[9]   

2.1.2.10 Models 

Various statistical and machine learning models have been analyzed for robustness 

improvement tasks. The models are often validated using k-fold cross-validation, with k set to 

10 or 5. To overcome the problem of imbalanced datasets, sampling techniques are used, such 

as SMOTE. 

Table 4: Models for software evolution 

Category Model Usage 

Decision tree J48, C4.5 [4] [8] 

LMT (Logistic Model Tree) [4] [8] 

Decision Tree [9] [3] 

Random Forest [8] [9] [3] 

SVM SVM (and/or variants) [8] [3] [13] 

Statistical Naïve Bayes [8] [9] [3] 

[13] 

 

 

 
1 In [8], only some of the Halstead and McCabe metrics were used. 
2 In [3], other source code metrics are collected at class, method, and variable levels. 
3 https://GitHub.com/mauricioaniche/ck 

https://github.com/mauricioaniche/ck
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Category Model Usage 

Bayesian Networks [8] 

LDA, QDA, LARS, RVM [8] 

LDA (Latent Dirichlet Allocation) [5] 

Logistic Regression [8] [9] [3] 

Nearest neighbor k-NN, K-Star [8] 

NNge (Nearest Neighbor generalization) [4] 

Neural CNN (Convolutional Neural Network) [4] 

GRNN ((extended) Generalized Regression 

Neural Networks) 

[7] 

Neural Network, Multilayer Perceptron [8] [3] 

Gated Recurrent Unit [2] 

LLMs 
ChatGPT, CodeLlama, Copilot, Claude [16][17][18][

19] 

Other ARIMA [14] 

Combined Rank List [14] 

Rip (Repeated Incremental Pruning) [4] 

  

2.1.2.11 Granularity 

There could be two aspects from which granularity can be considered when looking at software 

evolution. The first is a structural aspect (e.g., module, file) and the second is a time aspect (i. 

e. how often the changes are recorded). 

2.1.2.12 Structural aspect 

When discussing how a software evolves, it is important to consider what structural level we 

are considering. Evolution can be observed on the following levels (ranging from most coarse 

to the finest): project, module, file, class, method, and line. Some of the different code metrics 

discussed earlier can be calculated for multiple levels, but some are restricted to a given 

granularity (e.g., cohesion among methods). 

2.1.2.13 Time aspect 

When using a versioning system (e.g., Git), the changes are recorded as commits, which can 

provide snapshots of a system. The underlying problem here is that a developer may commit 

once or twice a day, which means that all the intermediary changes made between commits 

cannot be found in the versioning system. In [15] an IDE tool was proposed, which records all 

the high-level changes made to a file. This enables us to reconstruct the path between two 

commits and have as fine-grained information as possible. Looking at these changes makes it 

possible to categorize development sessions (i. e. sessions between commits) based on the 

activity (e.g., bug-fixing session, new development, trial of multiple approaches). 

The methods presented above capture the properties of the software in a way that the change of 

those properties can be analyzed on a timeline to show insights in the evolution of the software. 

Further research will be required to select the metrics which capture the most of security-

relevant changes and would result in the best model for AI4FIX. 
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2.1.3 AI-based program repair 

This section processes the possible usage of AI-based Automatic Program Repair (APR), 

especially using Large Language Models (LLMs). The section details the available models, 

possibilities, and state-of-the-art results. The results concentrate on the APR of vulnerabilities 

as this field is the focus of AI4VULN and AI4FIX. 

2.1.3.1 State-of-the-art analysis 

A wide spectrum of tasks related to source code can be handled by LLMs, notably the automatic 

correction of errors, particularly vulnerabilities as noted in [20] Since the development of GPT-

2, various researchers, including Paik and Wang [21], have explored this domain. The bug-

fixing potential of a finetuned GPT-2 model was specifically examined by Lajkó et al. [22] 

using the BugsJS [23] dataset, featuring elementary JavaScript bugs. Additionally, Lajkó et al. 

[[24] conducted a comparative analysis of fine-tuned and standard versions of GPT-2. 

The QuixBugs[25] dataset, a compilation of synthetic bug examples in Python and Java, was 

utilized by Prenner et al. [26]. OpenAI's Codex was employed to rectify these intentionally 

inserted flaws in the dataset, showcasing notable results, especially with Python code. They 

could fix 57.5% of the flaws in the dataset. In a similar vein, Sobania et al. [27] applied 

QuixBugs for assessing the performance of OpenAI's ChatGPT model, registering a substantial 

fixing rate (77.5%). 

Despite these remarkable findings, it is crucial to recognize that these investigations primarily 

revolve around minor, straightforward, and artificial programming challenges, potentially not 

mirroring complex real-world scenarios. Hence, there's a need for further assessment with more 

intricate programming problems. Studies like those by Charalambous et al. [28] and Hammond 

et al. [29] explored the capabilities of GPT models in both generating and fixing coding errors. 

Meanwhile, real-world application-based studies are also being conducted, as seen in the work 

of Nashid et al. [30] and Xia et al. [31] utilizing actual projects and datasets like Defects4J [32] 

and ManyBugs [33] 

Chunqiu et al. [34] embarked on a comparative study of different language models in the 

context of automated repair. Their approach involved validating plausible fixes by running test 

cases. Further, an automated repair tool named AlphaRepair was introduced by Chunqiu and 

Lingming [35] emphasizing interactive validation of fixes using line-level information and test 

suites. However, in real-world scenarios, particularly concerning software vulnerabilities, such 

iterative generation and testing processes may not be feasible due to the typical absence of 

vulnerability-specific test cases. 

To truly understand the efficacy of GPT-based automated vulnerability repair in practical 

settings, studies need to replicate more authentic scenarios. This involves handling genuine 

vulnerability cases without preliminary test-based evaluations. Subsequent tests should be 

confined to verify the accuracy of the devised fixes. A study by Wu et al. [35], using real-life 

vulnerability cases from the Vul4J [36] benchmark and VJBench, made strides in this direction, 

though their methodology included providing specific hints and utilizing a test suite for fix 

validation. 

2.1.3.2 Available models (LLMs) 

As LLMs gained space in software engineering not only engineers adapted to the models, but 

the models were trained to fit developer needs. There are multiple closed- and open-sourced 

models. We briefly cover the most likely models to be used with their pros and cons: 



D3.1: AI-driven self-testing and automatic error correction for robustness 23 

 

 

 

Table 5: Comparison of LLMs 

Model name (Company) Pros Cons 

Codex (OpenAI) 

Trained in source code. 

Already available via various 

plugins. 

Privacy due to OpenAI. 

Monthly or per-usage costs. 

GPT-4 (OpenAI) 

Instructions following. 

Mixed natural language and 

source code. 

Latest transformer model. 

Privacy due to OpenAI. 

Monthly or per-usage costs. 

 

CodeLlama (open-source) 

Open-source on Hugging 

Face. 

No privacy issues. 

 

Self-hosting costs. 

Fine-tuning costs. 

Lower success rate. 

2.1.3.3 Available benchmarks 

As the models require evaluations the necessity of benchmarks with wrong and fixed versions 

arises. The available benchmarks vary in size, data-source, and available tests. The processed 

literature contained not exclusively the following benchmarks: 

Table 6: Benchmarks 

Benchmark name Data source Pros Cons 

BugsJS Real-life 

High number of 

examples. 

Testcases. 

Simplicity of bugs. 

QuixBugs Artificial 
Multilingual. 

Commonly used. 

Trivial tasks. 

Simplicity of bugs. 

Vul4J Real-life 

Hand-validated. 

Proof of 

vulnerability. 

Complex problems. 

Low number. 

2.1.3.4 Setup of real-life APR 

Based on the literature analysis the experiment should reflect scenarios which could be 

acceptable or feasible on a project. The main restrictions are on the information provided for 

the model. The fix should not depend on the exact line of the problem as it might not be 

available in every case. Proof of the problem should not be provided as in most cases it is not 

available, e.g., test cases. The model should not generate multiple responses as a real-life 

scenario cannot rely on human prioritization and lastly, the results should be consistent among 

separate executions, which regarding probabilistic methods is a must-include. In our solution, 

the VSCode Plugin could provide multiple suggestions for fixing the code, although these 

multiple suggestions should be good fixes and the developer should not consider the suggestion 

as invalid fix. Therefore, even with our Plugin providing multiple fixes, we need to examine 
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the Top-1 results and consistency. As the results might not match the desired outcome it must 

be examined if the model response could be used as a hint for the developers and therefore used 

in a semi-automatized program repair. The evaluation must be performed on a real-life 

benchmark such as Vul4J. 

In our experiment we executed APR tasks on vulnerabilities using the Vul4J benchmark. We 

evaluated the generated fixes on Vul4J vulnerability test cases and with manual validations. We 

executed the fix generations twice to investigate the consistency of fixes. The experiment also 

included the helpfulness of GPT in semi-automated program repair. The experiment started 

with prompt engineering which resulted in a prompt that contained description about the project 

to be fixed, method level vulnerability information, vulnerability category and the vulnerable 

source code (Java). The prompt requested the model to generate a fix for the provided source 

code and provide a textual fix (detailed information about how to fix the problem). 

Our study showcased the potential of GPT-4 in addressing real-world vulnerabilities, diverging 

from many studies by focusing on practical application. We used objective tests and human 

evaluations to assess the feasibility and acceptability of GPT-4's solutions. The findings reveal 

that GPT-4's proficiency in real-world scenarios is promising but not flawless. It often provides 

helpful insights for developers, even if it struggles with complex fixes. Most of its successful 

solutions are simple, best-practice based. Overall, GPT-4 marks a significant step forward in 

automatic vulnerability fixing, highlighting the need for continued research to refine its 

capabilities for complex security challenges. 

The numerical results from our experiment are the following: 

- Using only the vulnerability type, GPT-4 achieved fixing rates of 32.43% and 37.84% 

across separate executions, averaging 35.14%. These outcomes are relatively lower than 

those from small, synthetic datasets, yet they align with or slightly surpass those from 

studies involving real-world vulnerabilities, despite not having precise vulnerability 

location or details. This suggests potential for future semi-automated or fully automated 

applications. 

- Textual fixes provided by GPT-4 were found to be beneficial in 58.70% and 50.00% of 

instances for the first and second runs, respectively. Notably, in 19.57% and 10.87% of 

these cases, the text responses alone were valuable, even when the accompanying source 

code was not. This indicates a strong potential for using textual fixes in semi-automated 

program repair and source code review processes. 

- To summarize all the results, GPT-4 fixes are reliable across individual runs, reaching 

a 31.58% pass ratio considering both runs. Considering the two separate runs, we can 

state that fixes are reliable and consistent, but consistency is not related to vulnerability 

types but rather to good practices. 

This experiment covered a small field of possibilities regarding LLMs in APR although it is 

evident that LLMs could be used for this task. Further prompt engineering, fine-tuning and 

methodologies for input should be examined which might be based on documentation 

generation and program synthesis completely. 

2.1.4 AI-generated automated testing 

This section delves into the intricate challenges of automated software testing, particularly in 

the context of leveraging large language models (LLMs) for code generation and evaluation. 

One of the core problems addressed is the difficulty in creating effective test suites that can 

cover a wide range of scenarios and catch potential bugs in code. We discuss the limitations of 



D3.1: AI-driven self-testing and automatic error correction for robustness 25 

 

 

 

existing testing approaches, which often fail to account for the nuances and complexities of 

real-world software development, such as handling diverse APIs and understanding the intent 

behind code snippets. 

To tackle these challenges, a paper from Tufano et al. [37] presents a comprehensive study in 

the field of automated unit test generation, focusing on the use of AI models to enhance this 

process. The research was structured around several key research questions (RQs), each aiming 

to explore different aspects of unit test generation using AI models, like examining the impact 

of model pretraining on unit test case generation and investigating how different levels of focal 

context affect training for unit test generation. 

The study addresses the challenge of generating high-quality, syntactically correct unit test 

cases that conform to standards and invoke a variety of testing APIs. It also focuses on 

generating test cases that are realistic, accurate, and human-readable. 

The datasets used include the Defects4j projects, which provide a reliable infrastructure for 

generating, compiling, executing, and evaluating test cases for various popular open-source 

software projects. 

The study presented a new approach for automated unit test generation called ATHENATEST. 

It was based on a BART transformer model, which has undergone both English and source code 

pretraining. This pretraining is crucial as it helps the model learn meaningful representations 

from real-world examples, which are then applied to the task of generating unit test cases. 

Beyond the initial pre-training, the model was also fine-tuned. It was performed as a translation 

task, where the source is a focal method (the method to be tested), and the target is the 

corresponding test case written by a software developer. This process uses a parallel corpus of 

mapped test cases, aiming to learn the mapping from a focal method to a test case as a 

conditional probability. The training employs cross-entropy loss and the Adam optimizer, with 

shared vocabulary embeddings between the Encoder and Decoder. The model was utilized with 

a specific representation of the input called the focal context method, which is about the 

inclusion of additional contextual information surrounding the focal method. This context is 

crucial for the model to generate more accurate and relevant test cases. The method involves 

experimenting with different levels of focal context to determine which variant provides the 

best performance. The focal context includes information such as the focal method, class name, 

constructors, other methods, and fields. 

ATHENATEST was evaluated on five Defects4j projects, generating approximately 25K 

passing test cases (about 16% of the overall generated tests) that covered 43.7% of the focal 

methods with only 30 attempts. The generated test cases were classified based on syntax 

correctness, compilability, execution, coverage, and correctness. The results showed that 

ATHENATEST could generate test cases that were syntactically correct, compilable, and 

executed correctly, with a significant portion achieving adequate test coverage. 

Beside the evaluation on a benchmark, ATHENATEST was also compared with EvoSuite and 

GPT-3 in terms of code coverage and developers' preferences. The comparison revealed that 

ATHENATEST outperformed GPT-3 and achieved comparable coverage to EvoSuite. A 

survey conducted with professional developers showed a strong preference for test cases 

generated by ATHENATEST over those by EvoSuite, particularly in terms of readability, 

understandability, and testing effectiveness. 

In summary, ATHENATEST represents a significant advancement in automated test case 

generation, with the advantage of including the ability to generate realistic, accurate, and 

human-readable test cases that are like those written by developers. It also leverages the power 
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of transformer models and benefits from both natural language and source code pretraining. 

However, the approach has some limitations, such as the challenge of incorporating project-

level context and supporting multiple testing frameworks. Additionally, deploying large neural 

models like ATHENATEST in production environments poses significant engineering 

challenges. 

While another study from Schäfer et al. [38] proposes a refined approach to prompt engineering, 

which is critical for improving the performance of LLMs in generating test cases. The authors 

introduce a set of prompt refiners—tools that enhance the quality of prompts used to guide the 

LLMs. These include the DocCommentIncluder, which incorporates documentation comments 

into prompts, and the SnippetIncluder, which adds usage snippets for functions. The paper 

evaluates the impact of these refiners on test generation, revealing that while some refiners 

significantly improve test coverage and pass rates, others show less impact, indicating the 

nuanced nature of LLM-based test generation. 

The paper presents TESTPILOT, an implemented tool that embodies the proposed solutions, 

and it is used to conduct an empirical study to assess the effectiveness of different prompt 

configurations. TESTPILOT's performance is measured against several metrics, such as the 

percentage of passing tests and achieved coverage. The results from TESTPILOT are compared 

with baseline configurations, demonstrating that the use of prompt refiners can lead to 

substantial improvements in the quality of generated tests. 

The TESTPILOT tool was tested on JavaScript. The document specifies that while the approach 

is language-agnostic, the current implementation targets JavaScript, and the results cannot be 

generalized to other languages. The tool was evaluated on 25 Node Package Manager (npm) 

packages, which indicates that it was indeed focused on the JavaScript ecosystem. The 

document also compares TESTPILOT's performance to Nessie, another state-of-the-art 

JavaScript test generator, suggesting that the choice of JavaScript was also to provide a 

comparative analysis with existing tools in the same programming language domain. 

However, the study also uncovers that the inclusion of certain information, like function 

implementations, can sometimes confuse the model, leading to less effective test cases. This 

highlights one of the biggest challenges in AI-assisted code generation: the balance between 

providing sufficient context to the model without overloading it with information that may 

detract from its performance. 

In conclusion, the document suggests that while tools like TESTPILOT and the use of LLMs 

in software testing represent a significant advancement, there is a delicate balance that must be 

struck in prompt engineering. The research indicates a promising direction for future work, 

which includes refining the strategies for prompt construction and exploring the integration of 

LLMs with other software testing methodologies to enhance the robustness and reliability of 

automated test generation. 

Another study from Siddiq et al. [39] which is an empirical study that is also focusing on the 

use of LLMs for unit test generation. This research is pivotal in demonstrating the capabilities 

and limitations of LLMs in software engineering, particularly in automated test case generation. 

The study utilized several prominent LLMs, including GPT-3.5-Turbo, StarCoder, and two 

configurations of Codex (Codex 2K and Codex 4K). These models were chosen for their 

advanced capabilities in code generation and their potential applicability in generating unit 

tests. 

The study primarily investigates the effectiveness of LLMs in generating unit tests for software. 

It uses two main datasets for evaluation: the HumanEval dataset, containing more than 160 
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common programming problems with known solutions, and the Evosuite SF110 dataset, 

comprising 110 mature real world open-source Java projects. These datasets are crucial for 

assessing the practicality and reliability of the generated unit tests. 

One of the significant challenges highlighted in the document is the LLMs' ability to generate 

high-quality unit tests that are both correct and comprehensive, and free of test smells. The 

complexity lies in ensuring that these tests cover a wide range of scenarios and effectively catch 

potential bugs, a task that is often challenging for automated systems. Compounding this 

difficulty, the complexity of software projects and the limitations of current LLMs in 

understanding code context and requirements posed significant hurdles. 

The study explores different configurations and contexts to optimize the performance of LLMs 

in test generation. It assesses the quality of unit tests not only based on coverage (line and 

branch) and correctness but also on the presence of test smells using tools like JaCoCo and 

TsDetect. The study's results varied across different models and datasets. For the HumanEval 

dataset, the LLMs achieved line coverage ranging from 67% to 87.7% and branch coverage 

from 69.3% to 92.8%. Codex (4K) showed the highest line and branch coverage of 87.7% and 

92.8%, respectively. However, for the SF110 dataset, the performance was significantly lower, 

with branch and line coverage less than 2% for all models. Among them, Codex (2K) had the 

best line coverage at 1.9%, and GPT-3.5-Turbo had the highest branch coverage. 

In summary, this document provides an in-depth analysis of the potential and limitations of 

using LLMs for automated unit test generation. It offers valuable insights into how these models 

can be optimized and highlights the need for further research to enhance their effectiveness in 

practical software development scenarios. 

2.2 AI4FIX System Requirements Analysis 

This section will explain how the relevant system requirements identified in D2.1 will be 

covered by AI4FIX. 

Table 7: System requirements coverage by initial version of AI4FIX component 

Req. 

ID 

Req. name Req. 

description 

Priority Coverage How addressed 

SR-

003 

Vulnerability 

fixing 

The 

AI4CYBER 

framework 

shall be able 

to fix the 

vulnerabilities 

via the 

AI4FIX 

component 

found in the 

source code 

by the 

AI4VULN 

component. 

M Covered For the 

vulnerabilities 

identified by the 

AI4VULN 

component 

AI4FIX will 

generate 

candidate fixes 

using the generic 

and custom 

models built. 
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Req. 

ID 

Req. name Req. 

description 

Priority Coverage How addressed 

SR-

004 

Robustness 

improvement 

The 

AI4CYBER 

framework 

shall be able 

to add 

robustness 

improvements 

to the source 

code verified 

by tests via 

the AI4FIX 

component. 

M Covered Generic 

robustness 

improvements 

will be added by 

AI4FIX by the 

learnt software 

evolution 

models. Test will 

be generated for 

the proposed 

fixes using the 

custom model to 

ensure their 

correctness. 

SR-

005 

AI4FIX-

AI4VULN 

interoperability 

The AI4FIX 

component 

should be able 

to read the 

output of the 

AI4VULN 

component. 

M Covered A JSON structure 

has been defined. 

See 2.4  

The requirements validation will be carried out in WP7.  

2.3 AI4FIX Specification 

The AI4FIX tool uses natural language processing techniques harnessing the knowledge from 

the models (via online API or locally implemented) we build according to software evolution. 

AI4FIX has a VSCode plugin UI for interacting with the developers (for selecting accepting, 

rejecting, modifying generated fixes, and initiating the execution of the tool). 

In the following a detailed specification of the AI4FIX component according to C4 model 

(https://c4model.com/) is provided. 

2.3.1 System context 

At the system level AI4FIX is employed by developers and/or security evaluators to correct 

the security-relevant bugs and improve robustness. 

https://c4model.com/
https://c4model.com/
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Figure 1: System context of AI4FIX 

At the top left of the diagram in Figure 1, we can find AI4FIX depicted as a Software System 

that serves as the principal component responsible for automated robustness improvements, 

vulnerability fixing, and test generation. This system directly interacts with the source code to 

apply these improvements and tests. 

AI4VULN is another Software System placed below AI4FIX, which identifies vulnerabilities 

within the software. It aims to provide the AI4FIX system with identified vulnerability 

locations, signaling precisely where the AI4FIX system should focus its fixing processes. 

On the right side of the diagram, there is the Project repository, which is an external element 

represented as another Software System and is labelled “E.g., GitHub containing source code 

of the ToE system.” This repository is where the source code of the Target of Evaluation (ToE) 

resides. Code changes generated by the AI4FIX system are applied here. 

At the bottom right, there is a Person icon labelled Developer, Security Engineer, and 

Evaluator, suggesting these roles are involved in the process, providing human feedback and 

expertise necessary to review and validate the fixes and improvements made by the AI4FIX 

system. 

Arrows in the diagram indicate the flow of information. The arrow labelled Code changes 

shows that modifications made are fed back into the repository. Meanwhile, an arrow labelled 

Applying fixes mutually connects the Developer/Security Engineer/Evaluator roles to 

AI4VULN, which indicates that human-reviewed fixes are incorporated into the vulnerability 

identification process to refine its accuracy. 

2.3.2 Container model 

At the container level we distinguish the following parts of AI4FIX: 
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Figure 2: Container model of AI4FIX 

The container model diagram in Figure 2 provides a more detailed view of the AI4FIX system 

than the previous context diagram, breaking down the system into its main components or 

containers. 

Software evolution is a Python application responsible for metrics and bug-fix pairs extraction 

from the source code. 

Model evolution is a container characterized as an LLM which uses the extracted features from 

the Software evolution process. It consists of both generic and custom models, indicating that 

it is designed to be adaptable to different types of software projects. This container interface 

with Identified vulnerability locations, showing that it uses information about vulnerabilities 

detected by the AI4VULN system to evolve its models. 

Fix and test generation is a container that seems to encompass multiple technologies (JAVA + 

Python + VSCode application) and is responsible for automated robustness improvements, 

vulnerability fixing, and test generation. This indicates a multifaceted approach to generating 

solutions for identified issues and verifying that the fixes are correct and effective. 

2.3.3 Component model 

The following three diagrams describe the container level of AI4FIX as an automated system 

designed to detect and fix software vulnerabilities, with a focus on continuous learning and 

improvement through machine learning models and human expertise. 
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Figure 3: Component model of Software evolution 

The component model of the Software evolution component (Figure 3) provides an architectural 

overview of the parts making up this specific Python application within the AI4FIX system. 

This model details how the software evolution process involves mining and storing datasets 

pertinent to software development and maintenance. 

Jira Miner is a Python application whose role is to collect bug-fix pairs from JIRA and GitHub 

as described in 3.4.5.1. 

GitHub Miner is another Python application that parallels the function of the Jira Miner but 

focuses specifically on mining data directly from GitHub repositories. The goal is to collect 

bug-fix pairs from GitHub, especially those related to commit history and interactions with 

Static Application Security Testing (SAST) tools, like Spotbugs or Open Static Analyzer. 

Both Jira Miner and GitHub Miner contribute to the construction of two distinct datasets: 

Generic dataset is a container that stores bug-fix pairs collected from both JIRA and GitHub. 

JSON format used for storage as it contains a variety of bug and fix examples that can be 

considered universal or generic across multiple projects. 
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Custom dataset is another container like the Generic dataset in its purpose but is customized 

for specific projects. This dataset gathers bug-fix pairs but with a focus on tailoring the collected 

data to the needs of the ToE's specific software project. 

The arrows labelled Stores point from the Jira Miner and GitHub Miner components towards 

both the Generic dataset and the Custom dataset, indicating that both miners contribute data to 

these datasets. 

Extracted features indicate that the processed and useful information from the datasets is 

provided to other components or processes, for further analysis or as inputs for model training. 

Model evolution shows that the extracted features from the datasets feed into a Large Language 

Model, which is involved in the development of both generic and custom models, as indicated 

by the component label. This model uses the data to learn and evolve effectively, presumably 

generating better solutions for fixing bugs and vulnerabilities. 

Overall, the components within the Software evolution application are responsible for data 

mining, processing, and storage, with the goal of supporting the continuous improvement of 

software robustness and security through better-informed machine learning models. 

 
Figure 4: Component model of Model evolution 

The component model of the Model evolution (Figure 4) component details the internal structure 

and interactions involved in developing and refining the machine learning model within 

AI4FIX. This is a deeper view into the Model evolution container, which was previously 

described as an LLM, and now we can see its components and their connections. 

The model revolves around four main components: 

Software evolution sits on the periphery as an adjoining container (a Python application), which 

is not a component of Model evolution but is crucial as it supplies Extracted features that are 

inputs for the model evolution process. 
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Training, fine-tuning, RAG is a Python application that stands as the central component 

responsible for the development of the machine learning model. RAG (Retrieval-Augmented 

Generation) is used for enhancing language model predictions by integrating retrieved 

information. This application processes extracted features and through training and fine-tuning, 

it continuously improves the model's performance. 

Model Database is a Vector Database characterized as storing Generic and customized data. 

This database retains the information necessary for the Training, fine-tuning, RAG application 

to operate effectively, it includes encoded representations of generic and project-specific 

examples that the model can use for learning and reference. 

Model itself is a Large Language Model being both 'Generic and customized,' indicating that it 

serves a dual purpose: it is capable of general application but can also be tailored to specific 

project needs. 

On the right-hand side, beyond the dashed boundary of Model evolution, is the Fix and test 

generation container. It receives influence from the model's output and provides Feedback into 

Training, fine-tuning, RAG. This represents a feedback loop where the results from generated 

fixes and tests (from the JAVA + Python + VSCode application) help to refine the training 

process, leading to a machine learning model more adept at solving the types of problems it 

encounters. 

 

Figure 5: Component model of Fix and Test generation 

The Fix and test generation container (Figure 5), within the AI4FIX system, is composed of 

critical components that interact with both internal processes and external entities to enhance 

software robustness and security: 

Fix generation is a Python application that not only generates code fixes based on model outputs 

but also interacts with the Project repository. This interaction involves pushing Fixed source 
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code back to the repository, which is an integral part of incorporating enhancements into the 

actual software project. 

Test generation creates automated tests designed to verify software functionality. The tests 

produced by this component are critical as they are used in conjunction with the Test execution 

component and ultimately serve to ensure that the fixes generated do not adversely affect the 

software's functionality. 

Test execution, utilizing Python and JAVA technologies, carries out the tests provided by the 

Test generation component. This execution process is crucial as it provides the necessary 

Human feedback loop for the human roles, namely Developers, Security Engineers, and 

Evaluators. Through their expertise, these individuals contribute to validating the fixes and the 

functioning of the software. Additionally, this component interacts with the Fix visualizer to 

enable an understanding of the context and impact of the fixes on the software. 

Fix visualizer is a VSCode plugin that provides a visual representation of the generated fixes. 

It serves a dual purpose: firstly, it helps developers and other stakeholders to visually 

comprehend the nature of the fixes within their code environment; secondly, it can interact with 

the results from the Test execution to visualize the outcomes, thereby supporting assessments 

and potential iterations of fix implementations. 

2.3.4 Hardware requirements 

The estimated hardware requirements for running an offline model on CXB premises for Use 

case 2 on baking applications. 

Table 8: Hardware requirements for the tools 

Item Property 

CPU cores 16 

RAM 32 GB 

GPU RAM 64 GB 

Storage 1 TB SSD 

Operating 

System 

Ubuntu Server Latest 

Other CUDA compatible GPU 

In case the estimated hardware requirements cannot be met, the performance may degrade. 

2.3.5 Software evolution 

The following section defines our nomenclature for software evolution and related concepts. 

- Software evolution – concept: A collection of techniques which aim to extract 

knowledge for fixing vulnerabilities from the development history of the selected 

project and other relevant projects. 

- Commit classification: We analyze historical commits of the repository in order to 

obtain metrics that we can learn to classify the commits based on their content (e.g., 

JIRA class): bug fix, new feature, test, revert, etc. and security relevance. The commit 

classifier can also consider the relevance of the observed code segment to security 

requirements. 

- SW evolution generic model: We want to learn – by examining a wide range of commits 

from various projects – how certain potential vulnerabilities detectable by SAST and 
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DAST tools (e.g., Spotbugs) are fixed. We collect many bug-fix pairs for security and 

robustness improvement to train a model which can generate the fixes. We would like 

to gather all the hidden fixes by running SAST tools on each commit and observing the 

differences. 

- SW evolution customized model: We want to learn – by examining the previous 

commits from the analyzed project – how certain potential vulnerabilities detectable by 

SAST and DAST tools (e.g., Spotbugs) are fixed in the selected project and customize 

our generic model with parameters characteristic for the selected project. We also take 

coding style and naming conventions into account to customize our generated fixes for 

the selected repository.  

2.3.6 Code synthesis using AI and LLM 

2.3.6.1 Evaluating the code synthesis capabilities of LLMs 

Code synthesis is currently a hot topic as LLMs are getting better at not only understanding 

natural language but transforming it to source code. The main scope is creating source code that 

passes all the functional conditions based on natural language descriptions. Although it is 

important, factors like software security and source code maintainability are not to be forgotten 

either. 

The related works in this area mostly evaluate one LLM but even ones that compare LLMs 

usually lack a proper comparison, a proper evaluation. Dominik et al. [40] did a comparative 

study on Copilot and Genetic program synthesis. Their main goal was to compare two 

methodologies for program synthesis and did not measure the quality of the synthetized code. 

In the work of Madi [41] the readability is measured by static code analysis, but no further 

qualities are checked and is heavily based on human annotators, including 21 people. 

A proper evaluation regarding LLMs should focus on 4 elements. 

- Selecting the right prompt is crucial as the input of LLMs is the prompt. If this prompt 

must be too detailed, the developer does not gain anything from using an LLM. Creating 

too abstract descriptions could result in the LLM generating results that fit the abstract 

description, but the developer needs a more specific solution. Selecting an abstract 

prompt enough with the best descriptions is called prompt-engineering. Various models 

might be more dependent on prompting than others. 

- Checking functional validity is the goal of source code synthetization. Functional 

validity could be tested by predefined testcases or even human testing, although in an 

automatic way testcases are preferred. 

- Checking technical quality is not to be forgotten as this includes the security and 

quality of source code. It might be checked by source code analyzers or human reviews. 

When applying a source analyzer during the evaluation, the same settings should be 

used as in an ongoing project to achieve the best fitting results. 

- Human evaluation requires tremendous resources although, if possible, it reflects how 

likely the developers are to use, accept the LLM synthetized source code. Human 

reviewers should not be aware of the functional and technical evaluation results and 

should not be aware of which model’s code they are reviewing. 

Besides these elements additional factors could be investigated. An example is the performance 

of the source code or Non-functional validity. The complexity of runtime or space could have 

a great impact on special software. 
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We evaluated Copilot and ChatGPT 3.5 on the previously mentioned criteria. The descriptions 

of natural language came from a benchmark created for code synthetization evaluation, PSB2 

[42]. 

We checked functional validity using 10.000 test cases from the benchmark’s test suit. The 

results are in the Table 9 for every task available in the benchmark. The results show what 

percentage of the 10.000 test cases passed for every task with the LLM generated source code. 

Table 9: Functional validity comparison 

Task name ChatGPT Copilot Diff 

basement 100% 100% 0% 

bouncing balls 5% 20% -15% 

bowling 5% 0% 5% 

camel_case 100% 100% 0% 

coin_sums 100% 0% 100% 

cut_vector 86% 0% 86% 

dice_game 54% 100% -46% 

find_pair 0% 100% -100% 

fizz_buzz 100% 100% 0% 

fuel_cost 100% 100% 0% 

gcd 100% 100% 0% 

indices_of_substring 23% 100% -77% 

leaders 18% 18% 0% 

luhn 0% 0% 0% 

mastermind 100% 36% 64% 

middle_character 100% 100% 0% 

paired_digits 100% 81% 19% 

shopping_list 100% 0% 100% 

snow_day 10% 5% 5% 

solve_boolean 75% 100% -25% 

spin_words 100% 100% 0% 

square_digits 100% 100% 0% 

substitution_cipher 100% 100% 0% 

twitter 100% 100% 0% 

vector_distance 98% 0% 98% 
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The technical qualities are checked by SonarQube Scanner. We investigated both code smells 

and vulnerabilities. We also investigated various code metrics. ChatGPT performed slightly 

better on these evaluations. Finally, we asked 5 developers to review source code generated by 

the two models. The developers had to score from –2 to +2 without 0 on the following 

properties: First Impression, Usability, Readability, Modifiability, Acceptance of the code. The 

developers also had to decide which code is better without knowing which code is generated 

by ChatGPT or Copilot. The results are presented in Table 10. 

Table 10: Result of developers’ evaluation 

Task name First 

Impression 
Usability Readability Modifiability Acceptance 

G 

/ 

C G C G C G C G C G C 

basement 10 10 10 10 10 10 10 10 10 10 -1 

bouncing_balls 9 2 0 3 8 4 9 7 2 3 -3 

bowling 2 6 7 5 6 6 4 3 5 4 0 

camel_case 6 4 -1 5 8 -2 8 2 -1 4 -1 

coin_sums 9 7 5 7 9 6 9 9 10 9 -5 

cut_vector 9 -3 8 0 9 4 8 4 9 1 -6 

dice_game 8 5 6 9 9 7 9 8 7 9 -3 

find_pair 9 0 7 4 8 4 8 5 8 2 -5 

fizz_buzz 7 6 10 10 9 8 7 7 9 9 2 

fuel_cost 8 6 9 10 10 5 9 9 10 9 -3 

gcd 10 -1 10 7 9 4 9 7 10 3 -9 

indices_of_substring 9 2 7 7 9 3 9 5 9 6 -2 

leaders 9 -6 8 6 10 -1 8 0 9 4 -9 

luhn 2 -5 1 -4 8 4 6 2 -1 -7 -5 

mastermind 5 3 8 5 8 4 6 3 8 3 -3 

middle_character 8 8 9 9 7 10 7 6 8 10 3 

paired_digits 9 4 10 6 10 5 9 7 10 4 -6 

shopping_list 10 1 10 2 9 -2 9 8 10 3 -8 

snow_day 8 4 -8 -1 7 2 3 7 -9 0 3 

solve_boolean 3 4 0 4 5 8 2 1 -2 4 2 

spin_words 10 5 10 6 10 7 9 7 10 7 -1 

square_digits 8 8 9 7 7 6 7 7 9 8 -7 

substitution_cipher 4 9 9 4 6 8 2 6 8 5 -1 

twitter 10 8 10 8 10 7 10 9 10 8 -4 

vector_distance 6 2 6 7 9 7 7 6 7 8 -1 

 

In Table 10, the maximum value is 10, as 5 developers were included and could rate it on max 

2. The minimum is –10 similarly. G/C column shows that the developer preferred ChatGPT (G) 

or Copilot (C). It was measured on –2 to +2 scale without zero too, therefore the close the values 

to –10 ChatGPT is preferred while values closer to +10 mean Copilot is preferred. Values close 

to zero show that developer opinions were different.  
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The results showed that developers did not consider the model synthetized code perfect or out-

of-the-box usable, but they considered the code acceptable. Developers slightly preferred 

ChatGPT generated source code. 

2.3.6.2 Robustness improvement 

Robustness improvements in AI4FIX are designed to be small and automatically applicable 

fixes which will not alter functionality. Learnt from the datasets of bug-fix pairs in software 

evolution generic model we can detect potential improvement opportunities and generate 

candidate fixes using the customized model to be tailored to the current repository. This feature 

is a work in progress at the time of writing as the models are not yet trained. Based on our initial 

tests LLMs can improve code snippets but require tight control over functional degradation, 

therefore test generation needs to be developed first. 

2.3.6.3 Test generation 

We have researched some tools already available for test generation on the market. 

This article [43] discusses the significance of AI-driven tools in test automation, highlighting 

their role in enhancing efficiency, cost-effectiveness, and reliability. It covers the evolution of 

test automation, the impact of AI on reducing human errors, and the transformation of QA 

methodologies. The article also emphasizes the growing complexity of applications and the 

increasing reliance on AI for maintaining quality standards. It presents seven popular AI-

powered test automation tools, each with unique features and capabilities, catering to different 

testing needs in web, mobile, desktop, and API environments. The article concludes by stressing 

the importance of defining clear goals for test automation to achieve desired outcomes and ROI. 

Here are the seven AI-powered test automation tools mentioned in the article, with brief 

descriptions: 

- Testsigma: An AI testing tool for web, mobile, desktop applications, and APIs, 

featuring auto-healing functionalities and natural language processing for test creation. 

- TestCraft: Built on Selenium, this tool is designed for both manual and automated 

testing, particularly for web-based software. 

- ACCELQ: A codeless tool enabling multi-channel test automation (web, mobile, 

desktop, API), focusing on business process-focused automation. 

- Applitools: Offers AI-powered visual UI testing and monitoring, integrating with 

existing tests and providing cross-browser, cross-device testing features. 

- Testim: An AI-powered platform for custom web applications, enabling rapid creation 

of UI and end-to-end tests with AI stabilization. 

- Sauce Labs: Provides comprehensive testing across devices, browsers, and operating 

systems, with functionalities for functional testing and parallel testing. 

- Functionize: A cloud-based tool using machine learning and AI for easy test case 

creation using natural language processing, suitable for desktop and mobile browsers. 

We conducted testing of Large Language Model-based test generation. The OWASP 

Benchmark Project [44] is a Java-based suite designed to assess the effectiveness of software 

vulnerability detection tools. It is an open-source web application with thousands of test cases, 

each corresponding to specific CWEs, suitable for testing SAST, DAST, and IAST tools. The 

benchmark ensures that all vulnerabilities are exploitable, providing a fair and accurate 

evaluation of these tools' accuracy, coverage, and speed. 
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The benchmark comprises both positive and negative test cases. Each case, including the 

negative ones, encompasses functionalities that could potentially be vulnerable, such as 

command execution or SQL queries. In negative tests, these potentially risky functionalities are 

designed so that they cannot receive user input, thus rendering them non-exploitable. 

Conversely, in positive tests, user input can interact with these vulnerable functionalities, 

making the vulnerabilities exploitable. This design allows for a comprehensive assessment of 

how security tools handle both secure and vulnerable code scenarios. 

The typical test case consists of the following parts: 

- GET or POST request handler, which extracts the parameters from the request and 

passes it to the doSomething function. The result of the doSomething function is passed 

to the vulnerable code. 

- The doSomething function performs some simple or complex operations with the input 

parameters, resulting that the input parameter may be the part of the output. 

So, the vulnerability detection tool should detect the vulnerable functionality correctly and 

should be able to follow the functionality of the doSomething function. 

In the following we show an example test case from the benchmark: 

/**  

* OWASP Benchmark Project v1.2  

...  

*/  

package org.owasp.benchmark.testcode;  

...   

   

@WebServlet(value = "/cmdi-01/BenchmarkTest01609")  

public class BenchmarkTest01609 extends HttpServlet {  

   

    private static final long serialVersionUID = 1L;  

   

...  

    @Override  

    public void doPost(HttpServletRequest request, HttpServletResponse response)  

            throws ServletException, IOException {  

        response.setContentType("text/html;charset=UTF-8");  

   

        String[] values = request.getParameterValues("BenchmarkTest01609");  

        String param;  

        if (values != null && values.length > 0) param = values[0];  

        else param = "";  

   

        String bar = new Test().doSomething(request, param);  

   

        String cmd = "";  

        String osName = System.getProperty("os.name");  

        if (osName.indexOf("Windows") != -1) {  

            cmd = org.owasp.benchmark.helpers.Utils.getOSCommandString("echo");  

        }  
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        String[] argsEnv = {"Foo=bar"};  

        Runtime r = Runtime.getRuntime();  

   

        try {  

            Process p =  

                    r.exec(cmd + bar, argsEnv, new 

java.io.File(System.getProperty("user.dir")));  

            org.owasp.benchmark.helpers.Utils.printOSCommandResults(p, response);  

        } catch (IOException e) {  

            System.out.println("Problem executing cmdi - TestCase");  

            response.getWriter()  

                    

.println(org.owasp.esapi.ESAPI.encoder().encodeForHTML(e.getMessage()));  

            return;  

        }  

    } // end doPost  

   

    private class Test {  

   

        public String doSomething(HttpServletRequest request, String param)  

                throws ServletException, IOException {  

   

            String bar = "";  

            if (param != null) {  

                java.util.List<String> valuesList = new 

java.util.ArrayList<String>();  

                valuesList.add("safe");  

                valuesList.add(param);  

                valuesList.add("moresafe");  

   

                valuesList.remove(0); // remove the 1st safe value  

   

                bar = valuesList.get(0); // get the param value  

            }  

   

            return bar;  

        }  

    } // end innerclass Test  

} // end DataflowThruInnerClass  

 

In the above example the doSomething function returns the received param, which contains the 

user data. This is because the code inside the if block adds param to a list, removes the first 

element of the list (which was "safe"), and then assigns bar the value of the new first element 

in the list, which is param. Since the command execution directly adds the return value of the 

doSomething to the executed command name, the command injection is exploitable. 

We chose this benchmark for evaluation because all its vulnerable scenarios are susceptible to 

exploitation. This characteristic made it ideal for our analysis. Specifically, we focused on the 

command injection test cases to assess the test generation capabilities of the LLMs, as the 

exploitation in these cases is distinctly observable. 
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The helper function used by all the test cases (printOSCommandResults) printed the result of 

the command execution to the standard out. It made the verification of the exploitation very 

simple, since we had to print out with the command injection, which can be checked easily, but 

will be printed only in case of a successful exploitation. From the lot of possible solutions, we 

chose to store a simple text file in the working directory of the server, which contained 

“abcd1234”. The command injection string can be some form of printing out the content of the 

file, for example ‘; cat hack.txt"’. 

Throughout the evaluation of test generation, we deliberately avoided specifying the exact 

means of vulnerability exploitation. Our approach focused on issuing precise instructions on 

the desired results of the exploitation, thereby facilitating its verification. The test was initiated 

using the following prompt: 

Your task is to create Mockito requests to properly call the vulnerable function to test the command injection. You have to 

execute the "cat hack.txt" function as an injected command. At the end of the test check that the response contains the 

"abcd1234" string, which indicates that the command is executed. 

Do not write an explanation, just give the source code. Use the following example structure to generate the unit test: 

<example test structure> 

 

We used the following example test case: 

import static org.mockito.Mockito.*.  

import static org.junit.Assert.assertTrue;  

   

import org.junit.Before;  

import org.junit.Test;  

import org.mockito.InjectMocks;  

import org.mockito.Mock;  

import org.mockito.Mockito;  

import org.mockito.MockitoAnnotations;  

import org.owasp.benchmark.testcode.BenchmarkTest01517;  

import javax.servlet.http.*;  

import java.io.StringWriter;  

import java.io.PrintWriter;  

   

public class BenchmarkTest01517Test {  

   

    @InjectMocks  

    BenchmarkTest01517 servlet;  

   

    @Mock  

    HttpServletRequest request;  

   

    @Mock  

    HttpServletResponse response;  

   

    @Before  

    public void setUp() {  

        MockitoAnnotations.initMocks(this);  

    }  
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    @Test  

    public void testDoPost() throws Exception {  

        String param = "; cat hack.txt";  // simulate command injection attempt  

   

        StringWriter stringWriter = new StringWriter();  

        PrintWriter writer = new PrintWriter(stringWriter);  

        when(response.getWriter()).thenReturn(writer);  

   

        servlet.doPost(request, response);  

   

        writer.flush();  

          

        String responseString = stringWriter.toString();  

        assertTrue(responseString.contains("abcd1234"));  // Check if the response 

contains the expected string  

    }  

}  

 

Throughout the evaluation of test generation, we encountered a few manageable issues that can 

be addressed through postprocessing. Firstly, despite our requirement for code-only 

submissions, there were instances where a brief explanation preceded the actual code. Secondly, 

while most code submissions were correctly enclosed within three apostrophes, occasionally, 

various types of apostrophes were utilized instead. 

For the AI to generate a valid test case targeting a genuinely vulnerable piece of code, it needed 

to overcome two challenges. The first challenge was to create an executable test, and the second 

was to generate user input that could potentially exploit the vulnerability. Considering that 

exploiting the vulnerability lay outside our evaluation scope — as it would require extensive 

knowledge beyond the vulnerable Java file, like the source of utility functions in the benchmark 

— we aimed to simplify the exploitation process. We provided a default user input ('; cat 

hack.txt'), which serves as an effective exploit string in most scenarios. In cases where this 

default input failed to produce a successful test, we automatically attempted the following 

alternative inputs as well.: 

"cat hack.txt" 

"FOO=cat hack.txt" 

 

The OWASP Java benchmark contained 92 vulnerable cases and 103 non vulnerable cases for 

command injection. We sent all these tests to various LLMs without specifying whether it is 

vulnerable or not, using the prompt and template we described above. Because the successful 

test generation (vulnerability exploitation) can be considered as vulnerability detection, we 

calculated the True Positive Rate (TPR) for each model. The TPR value is defined by the 

OWASP benchmark True Positive / (True Positive + False Negative), which is also called as 

recall value4. 

 

 

 
4 https://en.wikipedia.org/wiki/Precision_and_recall 

https://en.wikipedia.org/wiki/Precision_and_recall
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Since we accepted only the exploited vulnerability as a successful test, the number of false 

positive cases (when a non-vulnerable test is marked as vulnerable) was zero, so the False 

Positive Rate was also 0. 

Table 11: Test generation results 

Model TP TN FP FN TPR 

gpt 3.5-turbo 47 103 0 45 0.51 

gpt 4 65 103 0 27 0.706 

gpt-4-1106-preview 

(gpt4-turbo) 
46 103 0 46 0.5 

2.4 AI4FIX Communication Interfaces  

This subsection describes the JSON interoperability interface between AI4FIX and AI4VULN 

and sharing the information with AI4COLLAB (using Kafka). 

Using this JSON structure, AI4VULN can share its output (found potential vulnerabilities) with 

AI4FIX to generate fixes and relevant tests. 

An example of the JSON format is the following: 

[ 

  { 

    "id": "00001", 

    "name": "EI_EXPOSE_REP2", 

    "explanation": "...", 

    "tags": "CWE-XXXX", 

    "items": [ 

      { 

        "patches": [ 

          { 

            "path": "patch_1_EI_EXPOSE_REP2_24_24_34_51.diff", 

            "score": 9.962368049953128, 

            "explanation": "Repair with clone" 

          }, 

          { 

            "path": "patch_2_EI_EXPOSE_REP2_24_24_34_51.diff", 

            "score": 9.920913240350998, 

            "explanation": "Repair with Arrays.copyOf" 

          } 

        ], 

        "textRange": { 

          "endLine": 24, 

          "endColumn": 50, 

          "startColumn": 33, 

          "startLine": 24 

        } 

      }, 

      { 

        "patches": [ 

          { 
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            "path": "patch_3_EI_EXPOSE_REP2_29_29_36_55.diff", 

            "score": 9.962787573897263, 

            "explanation": "Repair with clone" 

          }, 

          { 

            "path": "patch_4_EI_EXPOSE_REP2_29_29_36_55.diff", 

            "score": 9.918276408046792, 

            "explanation": "Repair with Arrays.copyOf" 

          } 

        ], 

        "textRange": { 

          "endLine": 29, 

          "endColumn": 54, 

          "startColumn": 35, 

          "startLine": 29 

        } 

 } 

] 

      } 

] 

2.5  AI4FIX Installation and User Guide 

This subsection is dedicated to guiding users through the process of deploying the AI4FIX 

plugin for Visual Studio Code (VSCode). 

The source code for the AI4FIX VSCode plugin is publicly available and can be accessed at 

the following URL: 

https://github.com/ai4cyber-slab/ai4fix/tree/main/vscode-plugin 

2.5.1 Installing dependencies 

To set up the required environment for our project, it is essential to install all dependencies. 

This can be efficiently achieved by using the Node Package Manager (npm). Execute the 

following command in your terminal or command prompt: 

npm install 

This command will automatically download and install all the dependencies listed in the 

'package.json' file of the project, ensuring that all necessary modules and libraries are available 

for the application to run smoothly. 

2.5.2 Packaging, publishing 

For those looking to test an extension on a local installation of Visual Studio Code (VSCode), 

an essential step is to utilize the Visual Studio Code Extension (vsce) package manager. This 

tool is pivotal for packaging and publishing VSCode extensions. To install the vsce package 

manager globally on your system, use the following command in your terminal or command 

prompt: 

npm install -g vsce 

This command will install the vsce package manager globally (-g flag), making it accessible 

from any directory on your system. This installation allows you to easily package your VSCode 

https://github.com/ai4cyber-slab/ai4fix/tree/main/vscode-plugin
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extension, enabling local testing and preparation for eventual publishing to the Visual Studio 

Code Marketplace. 

2.5.3 Generate .vsix file: 

The .vsix file format plays a crucial role in distributing Visual Studio Code (VSCode) plugins. 

It is particularly useful for sharing your plugin privately with others who may not have access 

to the Visual Studio Code Marketplace or for testing purposes. 

Steps to Create a .vsix File 

- Navigate to the Extension's Root Folder: Start by opening your terminal or command 

prompt and navigating to the root folder of your VSCode plugin. You can do this 

using the cd (change directory) command. For example: 

$ cd path/to/vscode-plugin 

- Package the Plugin: Once in the root folder of the extension, run the vsce package 

command. This command compiles your extension into a .vsix file: 

$ vsce package 
# aifix4seccode-vscode-x.y.z.vsix generated 

Upon successful execution, a file named aifix4seccode-vscode-x.y.z.vsix will be 

generated, where x.y.z denotes the version of the plugin. 

 

When releasing a new version of your plugin, it is important to update the version number in 

the package.json file at the top of your project. The version numbering follows the semantic 

versioning pattern: 

- Major Version (x): Increment this number for major changes that may not be 

backward compatible. 

- Minor Version (y): Update this for minor changes that introduce new features but are 

backward compatible. 

- Patch Version (z): This is for small, backward-compatible bug fixes. 

 

To install the .vsix file into Visual Studio Code, use the following command in your terminal 

or command prompt, replacing x.y.z with the actual version number of your plugin: 

code --install-extension aifix4seccode-vscode-x.y.z 

2.5.4 Example of usage on a demo project 

Before using the AI4FIX VSCode plugin on a project, it is crucial to configure the extension 

settings properly. This ensures that the plugin interacts correctly with your development 

environment and tools. Key configuration parameters include: 

- Executable Parameters: Specifies the analyzer tool’s executable parameters. (e.g.: 

java -jar Main.jar)  

- Executable Path: Specifies the analyzer tool’s folder where the executable (.jar, .exe, 

…) is located.  

- Use Diff Mode: Change the mode of showing patches in the editor.  
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Diff mode options:  

- view Diffs (default): Choosing a fix will show a side-to-side diff view of the original 

content and the content that the fix would give.  

- view Patch files: Choosing a fix will show the patch file’s content of the fix. 

2.5.5 Example project 

To get a hands-on feel for how AI4FIX works, we recommend using the test-project.zip. This 

demo project is designed to help you familiarize yourself with the plugin's functionality, such 

as analyzing code, identifying issues, and applying patches. 

2.5.6 Open-source repository 

The code of AI4FIX will be released into this repository: 

https://github.com/ai4cyber-slab/ai4fix  

2.6  AI4FIX Unit Testing 

This subsection provides the plans for the unit tests of AI4FIX, which will be executed on the 

final version of the tool. The results will be presented in D3.3.  

Table 12: System test case AI4FIX_001 

Test Case 

ID 

AI4FIX_001 Component AI4FIX 

Req ID SR-003 Priority Medium 

Description We measure the accuracy of generated patches: TP, FP, TN, FN. 

Tested by SLAB 

Pre-

condition(s) 

Dataset for testing: including false positives, negatives, developers 

Test steps 

1 Run AI4FIX with multiple models on the test dataset 

2 Evaluate the results with human assessor 

3 Measure the number of correctly/incorrectly generated patches. 

Input data Dataset for testing: including false positives, negatives. 

Result Step 1 result 

The evidence will be the generated patches. 

Step 2 result 

Human assessment on generated patches (accept/decline + reasoning) 

Step 3 result 

Statistics from the experiment determine the most successful model. 

Test Case 

Result 

Achieved /Not achieved 

https://github.com/ai4cyber-slab/ai4fix
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Table 13: System test case AI4FIX_002 

Test Case 

ID 

AI4FIX_002 Component AI4FIX 

Req ID SR-003, SR-004 Priority High 

Description Human assessment on generated patches (accept/decline + reasoning) 

Tested by SLAB 

Pre-

condition(s) 

AI4FIX_001 test 

Test steps 

1 Run AI4FIX_001 test 

2 Evaluate with developers Step 2 of AI4FIX_001 test filtered to true positive 

results 

3 Evaluate results, create statistics 

Input data Dataset for testing: including true positives of generated patches. 

Results expected to be around 80% 

Result Can be organized to be part of AI4FIX_001 testing activities 

Test Case 

Result 

Achieved /Not achieved 

Table 14: System test case AI4FIX_003 

Test Case 

ID 

AI4FIX_003 Component AI4FIX 

Req ID SR-003, SR-004 Priority Low 

Description Measuring patch and test generation time 

Tested by SLAB 

Pre-

condition(s) 

Dataset for testing 

Test steps 

1 Run AI4FIX on the test dataset 

2 Measure the time required for generating patches and tests for multiple 

models 

3 Evaluate results 

Input data Dataset for testing filtered for true positives from AI4FIX_001 tests 

Result Can be organized to be part of AI4FIX_001 testing activities. 

The result is expected to be in the realms of a few minutes for 10k LOC. 
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Test Case 

Result 

Achieved /Not achieved 

Table 15: System test case AI4FIX_004 

Test Case ID AI4FIX_004 Component AI4FIX 

Req ID SR-004 Priority Low 

Description Compare test coverage before and after running AI4FIX 

Tested by SLAB 

Pre-

condition(s) 

Dataset for testing 

Test steps 

1 Run AI4FIX on the test dataset 

2 Run coverage analysis before patching 

3 Run coverage analysis after patching 

4 Evaluate results 

Input data Dataset for testing: including false positives 

Result The amount of successfully generated tests is expected to be around 80% of the 

generated patches (true positives). 

Test Case 

Result 

Achieved /Not achieved 

Table 16: Integration test case AI4FIX_005 

Test Case 

ID 

AI4FIX_005 Component AI4FIX 

Req ID SR-003 Priority Medium 

Description Integration of AI4FIX with AI4VULN. 

Tested by FEA, SLAB 

Pre-

condition(s) 

Completing the integration between AI4FIX and AI4VULN. 

Test steps 

1 We run AI4VULN on its regression tests and on open-source software  

2 We evaluate how AI4FIX uses the output of AI4VULN 

3 We validate the generated path of AI4FIX 

Input data Regression tests and open-source software 

Result We can validate that the integration is correct 
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Test Case 

Result 

Achieved /Not achieved 
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3 AI4VULN Architectural Design & Implementation – Initial 

Version 

The AI4VULN system is based on a symbolic execution engine for the Java language. The input 

for the Executor is a Java project in which we detect runtime errors, such as 

NullPointerExceptions, ClassCastExceptions, and so on. The output of the symbolic executor 

includes a list of these exceptions and the complete execution path (stack trace) leading to each 

exception. 

In the following sections, we provide an introduction on symbolic execution, which we continue 

with the discussion of the work done so far. 

3.1 AI4VULN – Symbolic execution-based vulnerability detection 

3.1.1 State of the Art Analysis 

The idea of symbolic execution was introduced in the 1970s as an elegant and powerful method 

for software proving, validation, and test generation. In 1976, King introduced the fundamentals 

of symbolic execution along with the presentation of the EFFIGY system [45]. EFFIGY is one 

of the first symbolic executor engines. It is written for PL/I programs and only handles integer 

variables symbolically. 

Already at this time, a wide variety of symbolic executor engines were being developed [46], 

[47], even though the computing power was not yet ready for the challenges, such as the 

explosion of execution branches or the simulation of the environment of the program. 

The evolution of symbolic executors has been defined by the steps taken to overcome these 

challenges. Various hybrid solutions, machine learning-based methods have been developed. 

One example is the mixture of concrete and symbolic execution which is called concolic 

execution or dynamic symbolic execution. The DART (Directed Automate Random Testing) 

system introduced by Godefroid et al. [48] was the first to suggest this approach. It performs a 

directed search in the symbolic execution tree through the iterated executions of the investigated 

software. The process starts with random input values, then during each execution information 

is collected about the symbolic variables to produce input data that would force the next 

execution on a new path. CUTE and jCUTE are also concolic testing systems for C and Java 

[49], [50]. Like the DART system, they collect information about symbolic constraints to 

produce input data, but they are extended with the capability of handling multithreading. If the 

constraint solver fails to satisfy a complex expression, the constraints are simplified by 

replacing some symbolic variables with concrete values. jCUTE can generate JUnit tests for 

sequential software. 

Another technique that is often used is some kind of heuristic for choosing between execution 

paths. Such techniques may aim to maximize coverage or to find the branches most likely to 

fail at runtime the fastest. Such techniques can be found in modern, widely used symbolic 

executors, such as KLEE [51], Java PathFinder and JDART [52]. 

KLEE is based on the LLVM assembly language and functions as a virtual machine. It 

powerfully handles environmentally intensive programs, for example by setting up a symbolic 

filesystem or by simulating faulty system calls. Because it is such an effective tool, KLEE is 

the basis for countless studies on symbolic implementation. For example, there is a novel 

regression learning-based search strategy called LEARCH [53] which was implemented on 

KLEE. LEARCH effectively explores and selects promising states for symbolic execution, thus 
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addressing the path explosion problem. It uses an iterative learning process using the data 

extracted from the symbolic execution of the program and generates high-quality, diverse tests. 

Like KLEE, the Java PathFinder (JPF) [54] tool also behaves like a virtual machine and 

executes the Java bytecode in a special way. JPF is developed at the NASA Ames Research 

Center for verifying and checking NASA projects. It has an extension, called Symbolic 

PathFinder (SPF) [55], for performing symbolic execution. SPF supports concolic execution 

and can be customized with several constraint solvers. One of them is the CORAL solver [56], 

which handles complex mathematical functions, making it effective in scientific domains. 

Two relatively recent surveys on the subject of Symbolic Execution are the work of Cadar and 

Sen [51] which was presented in 2013, and the detailed paper of Baldoni et al. from 2016 [57]. 

These provide a more detailed overview of the current state of symbolic execution. 

3.1.1.1 Exception handling 

Since our goal in symbolic execution is to detect errors at runtime, it is important to properly 

represent Java exception handling during execution. Representing exception handling in CFG 

is not a trivial task. Several articles deal with it. 

According to Amighi et al., the stack-based nature of the Java virtual machine (JVM) makes it 

difficult to determine explicitly thrown exceptions, making it hard to decide which handler is 

being controlled (if any). Implicit exception throwing makes it even harder to determine these 

[58]. 

In their work, they have constructed an algorithm that generates a correct control flow graph 

(CFG) from Java bytecode (JBC), which has been mathematically proven. This means that the 

CFG they constructed has all the properties of the original source code.  

As a starting point, they used the stackless intermediate representation language BIR (Bytecode 

Intermediate Representation), a transformation of JBC, invented by Demange et al. [59]. 

The BIR model places assertions in front of all instructions that can throw implicit exceptions. 

This makes it easier to take implicit exceptions into account. 

Unfortunately, their implementation was not available on the internet, so we could not compare 

it with our flow graphs. 

Phan et al. presented an end-to-end model for solving software defect prediction [60]. They 

generate the CFG of code from the compiled assembly instructions. They apply multi-view, 

multi-layer directed graph-based convolutional neural networks (DGCNNs) to learn semantic 

features. They tested their software on four datasets from CodeChef, a programming contest 

site. They noticed that using the CFG instead of Abstract Syntax Tree (AST) of a program as 

input for the DGCNNs increases accuracy. They claim their solution can scale well with larger 

projects. However, they did not test it on more significant projects written in C. 

3.1.2 Background 

3.1.2.1 Symbolic Execution 

During regular execution, the variables of the program have concrete values, meaning that the 

program follows a specific executional path determined by these values. The basic idea of 

symbolic execution is that the program is executed on symbolic values instead of concrete 

values. This execution cannot be considered a real execution, it only means an execution within 

a synthetic environment, by a static analyzer. When the exact value of a variable cannot be 

decided (because, for example, it is a user input or method parameter), a symbolic value is 
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assigned to it. A symbolic variable can contain multiple concrete values that are allowed for its 

type, for example, a symbolic integer can take arbitrary values within the range of integer type. 

The possible values of symbolic variables can be bound with constraints. These constraints are 

usually derived from conditional statements or assignments. If a statement contains symbolic 

variables, the whole statement will be symbolic, and this applies for logical expressions as well. 

A symbolic Boolean can either be true or false, therefore, the symbolic engine will continue to 

execute both the true and false branches of a symbolic conditional statement. This means that 

theoretically every possible executional path will be explored, and hidden runtime exceptions 

can be detected. 

The tree built up from the executional paths is called the symbolic execution tree. An example 

is presented in Figure 7. This is a directed, acyclic graph where each node represents a state of 

the program. Some branches of the symbolic execution tree are unreachable even with symbolic 

values because the concatenation of the conditional statements leading to them are unsatisfiable. 

Symbolic engines can cut off these unnecessary branches by maintaining and checking the 

satisfiability of a path condition (PC). The path condition is a quantifier-free logical formula 

over the symbolic variables. It contains constraints derived from the conditional statements that 

must be satisfied to reach the investigated executional state. Symbolic engines use constraint 

solver algorithms to check the satisfiability of the path condition and to decrease the number of 

possible branches when a conditional statement is reached. On the contrary, if a path condition 

is satisfiable, assigning the solutions to the symbolic variables as input values will direct the 

concrete execution to the state of that PC. Therefore, for example, symbolic execution can be a 

tool for test input generation. 

The following Java code in Figure 6 shows an example function which decides if the three 2-

dimensional points given as parameters can form a triangle. There are two erroneous return 

values: the function returns with -1 if the three points are on a line, and with 1 if the three points 

are not on one line but the triangle inequality is not satisfied anyway. The return value is 0 if a 

proper triangle can be composed from the three points. 

 

 
Figure 6: isTriangleValid function 

The implementation of the euclideanDistance function is not present, but as its name 

suggests it calculates the distance between two 2-dimensional points with the classic Euclidean 

formula. Suppose that the symbolic execution was started with this function, so the actual value 

of parameter p1, p2, and p3 are unknown, therefore, they must be handled symbolically. This 
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means that the two data members (coordinate x and y) of each Point are symbolic too, so they 

can hold any value from the domain of their type. Therefore, the value returned by the 

euclideanDistance function can be symbolic, making local variables a, b, and c also 

symbolic variables. Theoretically, we have more information about these variables than the 

parameters of isTriangleValid because the symbolic engine executes their initialization. 

Nonlinear constraints can be derived from the Euclidean formula and then appended to the path 

condition, however, it is clear that doing it programmatically is not a trivial task. Figure 7 shows 

the symbolic execution tree built up during the execution of the sample code. Each conditional 

statement at line 7 and 11 can be split up to three sub-expressions, all of them containing 

symbolic variables. The short circuit evaluation gives an explanation as to why the two if 

statements create three-three branching points during the execution, whilst having symbolic 

variables in the conditions means that both the true and false outcomes of each sub-expression 

have to be investigated.  

 
Figure 7: Symbolic execution tree 

Path conditions are not presented in Figure 7 because - as previously mentioned - the constraints 

derived from the initialization are non-linear. We assume that symbolic engines will not build 
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up and solve constraints like that on their own, mostly because they treat the sqrt function 

grammatically with symbolic variables and an indefinite number of loops instead of using its 

mathematical meaning. However, a developer is able to detect straightaway the three 

unreachable states, namely the three return 1 branches (colored with yellow). If three points 

given on the two-dimensional plane are not arranged on a line, they definitely form a triangle. 

Therefore, the if condition in line 7 is unnecessary, mathematically infeasible, making the true 

branches of each sub-expression unreachable. If an unreachable program state is discovered 

through unsatisfiable path conditions, the state and the sub-tree derived from it should be pruned 

from the symbolic execution tree. Not only do we avoid needless computations on that path, 

but possible false-positive warnings will also be eliminated. 

This example gives a quick insight into how the symbolic execution is performed in the classical 

way. Whilst it is a very powerful tool for detecting runtime failures, it has several limitations. 

One of them that already occurred in the sample code is related to constraint solving. As the 

example shows, it is not a trivial task to find an efficient solution to reveal unreachable program 

states. Another major drawback is path explosion. The number of possible executional paths 

grows with the number of conditional statements almost exponentially. The scenario is even 

worse with switch statements and loops containing symbolic conditions. Since it is not known 

in advance how many iterations must be done in a loop, symbolic engines must make a guess 

or unroll the cycle until a limitation is reached, otherwise an infinite number of branches is 

created. Managing different kinds of features in programming languages symbolically, like 

static initialization in Java, also gives room for challenges. Simulating the environment of a 

program (e.g., system calls) in a purely symbolic way can also be a problem. For a more detailed 

summarization of symbolic execution and its difficulties see the survey of Baldoni et al. [57]. 

3.1.2.2 RTEHunter 

In this section, we introduce the symbolic execution tool that we use for vulnerability detection. 

RTEHunter (abbreviation of RunTimeException Hunter) is a Java symbolic execution engine. 

It is part of the SourceMeter project, which is developed at FrontEndART Software LTD. 

SourceMeter [61] analyzes C/C++, Java, C#, Python, and RPG projects. It calculates source 

code metrics, detects code clones, and finds coding rule violations in the source code. 

RTEHunter is one of the static analyzers of the SourceMeter Java toolchain. It is designed to 

detect runtime exceptions in Java source code without executing the application in a real-life 

environment. Currently it can detect four kinds of common failures:  

- NullPointerException,  

- ArrayIndexOutOfBoundsException,  

- NegativeArraySizeException, and  

- DivideByZeroException. 

RTEHunter performs the analysis by calling the symbolic execution for each method in the 

program separately. For big systems, this approach is usually a better solution than only starting 

the execution from the main() method [62], [63]. 

Starting the execution at the entry point of the real-life execution seems like a natural and 

convenient idea, however the practical limitations mentioned in the previous section would be 

reached very soon, leaving many parts of the code unexplored. 

RTEHunter limits the number of states (nodes) in the symbolic execution tree and the depth of 

the execution tree as well. 
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3.1.2.3 ASG, CFG 

RTEHunter uses the Abstract Semantic Graph (ASG) [64] of the program, which is constructed 

by the analyzer of SourceMeter. The ASG is a language-dependent representation of the source 

code that contains every detail of the source code in an internal graph representation. It is similar 

to an Abstract Syntax Tree but provides additional semantic information. First, RTEHunter 

builds a language-independent Control Flow Graph (CFG) [65] based on the ASG, and 

symbolic execution works on this CFG. In a CFG, each node represents a basic block. Basic 

blocks are the abstraction of straight-line program parts which are guaranteed to be executed 

sequentially. A jump in the code, like a conditional statement or a return statement, terminates 

the current basic block, and the outgoing edges connect to the basic blocks that are the targets 

of that jump. BasicBlock 5 in Figure 8 shows an example for a conditional jump with a true and 

false outgoing edge. Since RTEHunter performs symbolic execution on each method of the 

program, a separate control flow graph will be created for all methods. Each CFG for a method 

contains exactly one entry block and exactly one exit block, even if there are more return 

statements in a method (see Figure 8). The control can only enter and leave the CFG of a method 

through these two blocks, making them useful for handling function calls and returns. 

The euclideanDistance function has a different control flow graph shown on the top of the 

figure. It is reached through call edges, however, this CFG is only represented with the entry 

and exit blocks without real content. Inside each basic block, we can find the ASG nodes that 

are visited in a sequential order. As previously mentioned, each method invocation creates a 

new basic block, which is why the first three initialization lines of the isTriangleValid 

method appear in four basic blocks (BB 16, 3, 4 and 5). From BasicBlock 5, a new basic block 

starts at each conditional sub-expression. Note that BasicBlock 6 represents the whole 

conditional statement at line 5, whilst BasicBlock 10 represents the if statement of line 7. BB 6 

and BB 10 are not necessary, they are collector basic blocks introduced to make handling the 

expressions that contain multiple sub-expressions easier. 

There are also true and false out-edges of these basic blocks, but the RTEHunter is aware of the 

short circuit evaluation so, for example, if the control reaches BB 6 from the true edge of BB 

5, there will be no branching in BB 6, only the true edge will be continued. It can be seen from 

the given control flow graph that RTEHunter performs an interprocedural analysis. The 

symbolic engine handles method calls by continuing the symbolic execution in the called 

methods and then returning to the original function as during normal execution. 

Built-in or third-party Java functions are also executed, however any warning found in them 

will be filtered out from the final output. 
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Figure 8: Control Flow Graph (CFG) of the isTriangleValid function 
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Figure 9 shows the symbolic execution tree constructed by RTEHunter. Some basic blocks 

appear multiple times, but each of them represents a different program state. 

 
Figure 9: Symbolic execution tree 

3.1.2.4 Constraint solvers 

As mentioned in the previous chapters, in symbolic execution, so-called path conditions are 

created along each execution path. Checking their satisfiability and cutting off redundant, 

unavailable execution paths is a crucial task during this simulated execution.  

3.1.3 Introduction 

Many mathematical problem domains can be handled with computer programs, known as 

solvers. The inputs to these solvers can be formally described, and algorithms are available to 

calculate the corresponding outputs. Designing a solver involves formalizing the inputs and 

implementing an algorithm. 
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It can be observed that multiple solvers can be designed for a single mathematical problem. For 

popular problems, a simple internet search can yield numerous implementations/solvers. 

One of the earliest mathematical problems for which solvers were developed is linear 

programming [66]. LP solvers are designed to solve linear programming problems, where the 

input consists of a linear function to be optimized and a finite set of linear constraints. The 

choice of algorithm and its precise implementation are crucial in this case. The simplex method, 

developed by Dantzig in the 1950s [67], is one of the most important algorithms and is often 

listed among the top 10 algorithms [68]. While the simplex method performs well in practice, 

there are theoretical cases where it can be slow. However, this does not affect applications, as 

simplex-based LP solvers perform very well. Internal point methods have also been developed 

based on theoretical considerations, offering alternatives to the simplex method. 

During the development of theoretical computer science, the class NP was introduced [69]. This 

class contains languages, and a language is a mathematical description of a decision problem. 

In decision problems, a single bit needs to be computed: either accept or reject the input. The 

language is the set of inputs that need to be accepted. The NP class is not the focus of this thesis, 

so its definition is not elaborated on. Only the necessary theoretical background is provided. 

There is often a significant relationship between two languages (decision problems, i.e., 

true/false questions). One language may be capable of formulating questions in the other. That 

is, a question associated with language L_1 can be reformulated for a problem in language L_2. 

If the complexity/time required for reformulation is negligible, then the L_1 problem has been 

reduced to the L_2 language. 

A significant result in theoretical computer science is the identification of universal problems 

in NP. These problems can formulate all problems in NP (every language in NP is reducible to 

them). The celebrated Cook-Levin theorem [70], [71] states that the SAT language in NP is one 

such universal problem. 

The SAT language involves the decision problem of determining the satisfiability of a 

propositional logic formula in conjunctive normal form (CNF) [72]. The formalization of a 

CNF is straightforward, as it consists of a set/sequence of clauses. These clauses must all be 

satisfied, meaning they are connected by logical 'OR' (or 'AND') operations. A clause is a 

disjunction of variables and negated variables. Variables/negated variables collectively are 

called literals. A clause is satisfied if at least one literal evaluates to true. While it is a simple 

logical problem with easily describable input, a trivial algorithm can be designed. The variables 

(let their number be n) can be evaluated in true/false logical values in a finite number of ways. 

The total number of evaluations is 2^n. These can be enumerated, and the input can be evaluated 

on each. The first assignment of values to variables that makes the input CNF true stops the 

algorithm and leads to an accepting state. If all evaluations are tested without finding one that 

makes the input CNF true, the algorithm stops with a rejection. 

Naturally, the development of SMT solvers did not stop with this naïve algorithm [73]. The 2^n 

possibilities are too many to check (which we must do if the input is unsatisfiable) therefore it 

is not suitable for practical use. Typically, the number of logical variables is a few hundred or 

even thousands. In such cases, the number of possibilities is too large even for the fastest 

networked computers. 

Numerous SAT solver algorithms have been developed. Similar to the simplex method, these 

algorithms exhibit shortcomings in worst-case analysis, yet frequently demonstrate excellent 

performance in practical applications. Ongoing advancements in SAT solvers involve the 
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refinement of heuristics and implementation techniques. Their performance is evaluated, for 

example, in the form of world championships. 

SAT solvers are gaining relevance in many practical scenarios. The Cook-Levin theorem states 

that every NP problem can be efficiently reformulated as a SAT question. This includes, among 

other things, the factorization problem necessary for breaking modern encryption. If we want 

to factorize a specific number, for example, to determine the presence of a small prime divisor, 

this question can be formulated as a CNF formula. The satisfiability of this formula expresses 

the existence of the small prime divisor. This example illustrates how useful an SAT solver can 

be. 

Integrating a suitable logical solver into a system can make the system much more efficient. 

This was a primary motivation for integrating a solver into RTEHunter. The integration process 

consisted of several steps. First, we had to select the solver to be integrated. However, the 

number of SAT solvers can be measured in the hundreds. There are numerous solvers for each 

formula class. One of our selection criteria is that expressive ability of logical formulas should 

be high. This could it easy for RTEHunter to formulate questions. Other aspects included, for 

example, the solver's accuracy, speed and whether its code base was still maintained. 

Our choice was SMT solvers [74]. Their expressive power surpass those of SAT solvers, and 

they are widely used and developed. 

3.1.3.1 SMT solvers 

SMT (Satisfiability Modulo Theories) solvers are programs that decide the satisfiability of 

formulas modulo theories. Modulo theories generalize the Boolean satisfiability problem. They 

extend the Boolean satisfiability problem (SAT) to be interpreted within certain formal theories. 

The name "modulo" arises from the interpretation of these expressions within a specific formal 

theory. In first-order logic, these expressions are often written with equality, excluding 

quantifiers, in a manner familiar to Boolean algebra. It is worth noting that SMT formulas can 

describe SAT formulas, making the design of SMT solvers more challenging than SAT solvers. 

Since SAT satisfiability is an NP-complete problem, SMT is also NP-hard. For many inputs, 

satisfiability is undecidable, which means the solver might enter an infinite loop (programs 

typically handle this with a timeout parameter, terminating after a specified runtime). After a 

successful run, we obtain information about whether the machine can satisfy the system of 

conditions we built. 

These solvers are frequently used for verification, symbolic execution-based testing, and even 

for proving program correctness [75], [76], [77]. 

3.1.3.2 SMT-LIBv2 language 

Solvers have developed a language for encoding input and output, known as the SMT-LIBv2 

Language. Figure 10 shows an SMT-LIBv2 fragment. "Code lines" written using this language 

serve as the solver's input. Most solvers can obtain this input either by loading a file or by 

entering it through the program's interface. The code lines, enclosed in parentheses, typically 

include settings in the first lines, specifying the logic the solver should use to search for 

solutions or whether it should generate models, among other options. 
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Figure 10: SMT-LIBv2 language 

Next come the declarations, where variables and functions can be defined. These declarations 

specify the inputs and outputs of functions. For example, a declaration could define a function 

that takes two integer inputs and produces one integer output: (define-fun name (inputTypes) 

outputType (body)). Following these definitions are the conditions the program attempts to 

determine if they can be satisfied. If satisfiable, it returns "sat"; otherwise, it returns "unsat." 

Additionally, in the case of a "sat" output, a model can be requested, providing a concrete 

solution to the conditions. 

It was mentioned earlier that satisfiability is NP-hard, so finding a solution within a reasonable 

time frame is not guaranteed. Solvers handle this by providing a result if a time limit is set. If 

the solver cannot find a solution within the specified time, a "timeout" result is returned, and 

no model can be requested. The purpose of the timeout is to ensure the program terminates. 

One interesting aspect compared to other languages is that operators are specified before the 

variables/values on which the operation is to be performed. This allows for the construction of 

more complex expressions, as shown in the accompanying image, using parentheses 

appropriately. 

3.1.3.3 Improvement of CFG generation 

As part of the development of the symbolic executor, the ASG and CFG generator modules 

were also tested. We wanted to achieve full support for Java 11 language elements. 

3.1.3.3.1 Try-with-resources 

Try-with-resources was a new feature of Java 11. This is a control structure for automatically 

handling the resources we specify as the parameter of the try block. If an exception occurs 

during the execution of the try block, the resources declared in the parentheses of the try-with-

resources statement are automatically closed. This is the main advantage of try-with-resources 

– it ensures that resources are properly closed, even if an exception occurs. 

Resources must implement the AutoCloseable interface. The close () method of the interface 

handles resources to be closed appropriately. 
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Figure 11: Try-catch with multiple resources 

Figure 11 shows an example usage of the try-with-resources, containing two AutoClosable 

resources, r1 and r2. Regardless of whether an exception is thrown in the try block, their close 

methods will be executed after the try block is executed. Figure 12 shows a simplified CFG that 

was originally built from the Java code shown in Figure 11. Dashed lines represent method calls 

(e.g., call to the close () methods at the end of the try block) and solid lines represent control 

edges. The r1, r2 basic boxes represent the initialization of the two resources. However, these 

basic boxes are not part of the control flow graph, the control cannot reach them starting from 

the entry block. This has been corrected in Figure 13. The idea was to implement a new visitor 

that connects the basic blocks of the new resources into the control flow before the try block. 

The resources should also be connected to each other respecting the order in which they were 

declared.  

Both Figure 12 and Figure 13 also show a basic block with no edges from the entry block. This 

is because this basic block represents the error handling, i.e., the catch branch. Every statement 

in the try block that can throw an exception should be linked to this block as an incoming edge. 

These edges are not shown in the figures. There will be a further literature review on the 

exception handling representation. 

 

 
Figure 12: Original CFG 
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Figure 13: Improved CFG with resource handling 

3.1.4 Handling finally blocks 

In Java, the final block is used in conjunction with a try block to define a set of statements that 

will be executed regardless of whether an exception is thrown or not. The final block is part of 

the exception handling mechanism and provides a way to ensure that certain code is always 

executed, typically for cleanup purposes, regardless of whether an exception occurs. 

 
Figure 14: Try-catch-finally construct 

If a Java code includes a try-catch-finally construction with branching in the try block (like in 

Figure 14), the CFG needs to appropriately represent the flow of control, including the handling 

of the final block. Other branching structures are also possible, e.g., a throw statement, continue, 

break or a return statement. The final block will always be executed, even on an explicit return 

statement. RTEHunter, integrated with the constraint solver, was no longer able to handle these 

branching cases well, so we improved it. Figure 15 shows the original representation of the 

control flow. There is no final block between the block containing the return statement and the 

exit block, which is a mistake. However, connecting to the existing finally block is no solution 

either. How does the symbolic executor know whether to go to the code3 block or the exit block 

after executing the final block? The solution we came up with is cloning the final blocks, 

making them easier to read but also keeping the correctness of the execution flow. This can be 

seen in Figure 16. 
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Figure 15: Original CFG for handling finally blocks 

 

 
Figure 16: Improved handling of finally blocks 

 

During the implementation of this feature, we had to pay attention to various aspects.  For 

example, duplication is not necessary if the same code block were executed from both input 

branches after executing the final block. Nested try-catch-finally constructs and labels also 

needed extra consideration. 

3.1.5 Constraint solver integration 

To make RTEHunter as efficient as possible in detecting run-time errors, we have integrated a 

new state-of-the-art constraint solver. In this section, we discuss the measurements taken to 

select the constraint solver and the challenges of integration. 

3.1.5.1 Solver Comparison 

The project began with research, exploring available solvers, searching for benchmarks on their 

performance, and comparing them. The results are discussed in the following subsections. 
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Both paid and open-source solutions exist, but for the project, only freely available solvers with 

open-source code were tested. During the solution process, even cases where only the solver 

was used as a runnable program were tested, so the limitation that comes with paid programs, 

typically not providing access to the source code, did not apply. 

Accuracy, speed (for solving a demonstrably solvable task), and support for development were 

crucial aspects for application purposes. After reviewing several programs and benchmarks, it 

can be concluded that support is often discontinued, or new versions are infrequent in many 

cases. The yices2 [78], for instance, performed well in many places a few years ago but has not 

been updated since 2021. Several documents describe SMT solvers that no longer exist or have 

fallen far behind in development. Many solution logics can be set for a given solution, and there 

is no clear "winner." 

During our research, we came across the SMT-COMP competition, which aims to compare 

SMT solvers. The competition evaluates how quickly a solver solves a given problem set (less 

time results in more points), and the accuracy, determining whether the response is correct 

(higher accuracy rate earns more points). 

Most solutions are either a major solver name or a modified version of it. As shown in Figure 

17, in this task, Z3++ and one variant of Z3 were the winners in several "divisions." This is 

possible because, in the SMT-LIB2 language, the solution logic can be specified, allowing a 

program to achieve different results. Based on our own tests, we found CVC5 and Z3 to be the 

most valuable, and their source code is publicly available. Both were tried during integration. 

Ultimately, the decision was made in favor of Z3 because its build does not require a specific 

environment, while CVC5 requires a Linux system capable of Linux-Windows cross-build 

using MINGW. 
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Figure 17: Participants of an SMT solver competition 

RTEHunter is developed using Microsoft Visual Studio on a Windows system, so it was 

advantageous not to need to set up a new environment for building CVC5. Conceptually, we 

tried using the compiled binary to see how usable the solution is, and based on initial tests, its 

operation is similar to that of Z3. From this, we concluded that any program capable of 

interpreting the SMT-LIB2 language could be used during integration. 

3.1.5.2 Measurements and results 

To select the best solver, we also carried out our own measurements. To do this, we had to 

collect SMT-LIBv2 codes and run them to test the accuracy and speed of the solvers. The SMT-

LIBv2 codes were obtained from various online sources, benchmarks, and we created our own 

test codes as well. Unfortunately, some of the online sources were faulty and did not meet the 

formal language requirements.  These faulty files did not pose a problem during measurements 

because these consistently led to errors in each solver. We tested several SMT solvers, and 

ultimately, Z3 was chosen. Most solvers were typically either very slow but accurate or very 

fast but not capable of handling large problem sets. One notable example was exceptionally 

fast, averaging "solutions" in less than 0.1 seconds. However, we got an answer in less than 

10% of cases and in the remaining 90% the program timeouted, which is not acceptable for the 

symbolic executor. 

Two of the best-performing programs were CVC and Z3. We conducted various measurements 

on these programs. It is essential to mention that we verified the output beforehand, but during 

the measurements, none of the programs output anything to the screen. This helped filter out 

differences in how each program displays solutions or models. In the case of Z3, we took 
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advantage of the convenience feature that eliminates the need to specify the logic (other 

programs also allow skipping this step, but the behavior may change). The measurements are 

summarized in Table 17. 

Table 17: Results of the measurements 

SMT solver 1 run, 1000 API 

calls 

1000 runs, 1-1 API 

calls 

Solver.exe 

Z3 11.053 20.792 14.618 

CVC 4.428 62.196 68.627 

CVC ALL 4.442 65.876 58.34 

CVC QF_UFLIA 4.146 72.195 57.242 

z3/cvc Best 2.665943078 0.3342980256 0.2553719297 

z3/cvc Worst 2.488293561 0.2879977838 0.2130065426 

Best/Worst 1.071394115 1.160765966 1.198892422 

 

At the beginning of each row in Table 17, you can see what was used for the solution 

(program/logic), and the last 3 rows show the meaning of the numbers listed there. Z3 does not 

expect logic, so it is never specified there. The choice could be narrowed down there as well, 

but in online forums, it is often stated that it is "not customary" to use logic, and specifying it 

is not trivial. For CVC, three types of invocations are visible: without specifying logic, with 

ALL, and with a specific (randomly chosen) logic. In theory, there should be no difference 

between ALL and without specifying logic, but CVC, if nothing is specified, signals to at least 

provide ALL. However, the difference is evident in time. Best and worst represent the best and 

worst times between Z3 and CVC, regardless of the logic used. 

In the second and third columns, the mode of execution is visible, whether we solve one 

problem 1000 times with the program or solve 1000 problems with it at once (the same problem, 

only the number of runs differed, either separately or in one batch). In the third column, you 

can see data for solving the entire set of 1000 problems, where we solved the problem with a 

precompiled binary. All runtime is in seconds. 

At first glance, based on the table, it is apparent that CVC5 significantly outperformed Z3 

because it solved 1000 problems faster in one run, and there is a factor of 2.4-2.6 between the 

runtime values. This is not an error; based on measurements, it was clear that CVC5 is faster 

with a larger, more complex problem set. It is also visible that there is a difference when 

choosing logic. Something different happens if nothing is specified, if everything is given, or if 

we introduce a "limitation." The choice of solution logic was not based on anything specific; 

we chose a solution logic that could solve the problem(s) because it could also be chosen so 

that it could not handle the given problem set. Therefore, the choice was only roughly random, 

with minimal directionality. In the second column, it is evident that if we have many small 

problems, then Z3 performs significantly better, about 3 times faster than CVC. We found no 

clear reason why loading CVC multiple times would cause such a significant difference. The 

only thing we could think of during the research is what we mentioned earlier that CVC5 
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requires a system capable of Linux-Windows cross-build for its build, while Z3 can be natively 

built with VS2019 (or later). Binary execution typically falls between the two runtimes. The 

only difference occurred when we gave the solver a file without specifying the logic. 

In Z3, there is a direct API call that solves the problem from SMT-LIBv2 code. Somehow, 

string API calls are faster than directly written API calls. We did not find clear information 

about this in an official description, but various forum claims suggest that Z3 converts API calls 

to strings in the background, which would explain the runtime differences. For the solving of 

1000 problems with one run and solving 1000 problems in 1000 runs, it solved them in 10.236 

and 15.471 seconds, respectively, based on the table, which are better results than the previous 

run. 

3.1.6 Low-level integration challenges 

3.1.6.1 Bit operations 

In the Java language, it is possible to perform bitwise operations with primitive types, but not 

in SMTLib2. In Java, bitwise operations are only defined for integers. The reason for this is 

that, in order to perform the operation, the computer needs to represent the number as a 

sequence of bits. Floating-point numbers are stored according to the IEEE-754 standard, where 

the first bit represents the sign (0: positive, 1: negative), followed by 8 bits for the exponent, 

and the remaining 23 bits for the mantissa. For example, 1.5 is represented as 0 - 01111111 - 

10000000000000000000000 (separated by "-" as indicated earlier for the 1-8-23 bit blocks). In 

this example, it is already evident that a bitwise shift operation would cause issues. Shifting the 

exponent to the left by 2 would move the 1-bit to the sign's position. 

In SMTLib2, bit vectors need to be handled separately. We can only apply bitwise operations 

to this type, which in Java, we are accustomed to applying easily to integers. The following 

code snippet allows us to create a bit vector named x_0 containing 32 bits: (declare-const 
x_0 (_BitVec 32)). This type does not exist in the Java language; however, we need it 

because bitwise operations cannot be performed differently in SMTLib2. Primarily, we will use 

it by converting a previously created variable to a bit vector for operations with a variable like 

((_int2bv 8) variable). With this, we can perform bitwise operations, such as bit shifting 

or bitwise AND, as needed. Of course, in the example mentioned earlier, we only created an 8-

bit bit vector, which does not cover the entire integer range. This needs to be adjusted to Java 

types. 

When performing bitwise operations, it is crucial to ensure that the operations are carried out 

on bit vectors of the same size. In SMTLib2, you cannot perform a bitwise OR operation on an 

8-bit and a 16-bit bit vector. One solution is to create all bit vectors with the largest size possible, 

ensuring that different sizes won't cause issues. However, this introduces a new problem. If we 

had a byte type in Java, we would need to handle overflow properly to avoid the larger container 

producing a result different from what would occur if the code were running in reality. 

During conversion, one approach is to use an appropriate all-one vector during the conversion 

process, eliminating the upper extra bits needed for SMTLib2 to perform the operation. This 

helps address issues like overflow caused by a bitwise shift that might exceed the maximum 

value the type can store. 

During integration, some modifications were made to the existing solution, and some 

completely new additions were introduced. The constraint expression class, which previously 

stored type of information and could negate expressions, etc., was aligned with Java types. 
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However, with the introduction of bit vectors, a new type had to be created to handle this data. 

The most straightforward solution was to create a new constructor where the "bitvector" field 

was set to a default value of false, leaving the previous constructor(s) unchanged. This 

ensures the proper functioning of the previous parts, and the change does not cause issues 

because the bit vector type does not exist in Java or C++. It was strictly necessary for SMTLib 

to enable bitwise operations (shift, bitwise AND, bitwise OR, etc.). 

We have two types of operations: traditional bitwise operations (e.g., left shift) on bit vectors 

and traditional operations that involve a bit vector on one side and a primitive number type on 

the other side (e.g., adding a bit vector to n integer). Handling these cases occurs separately. 

In cases where we perform traditional operations on bit vectors, we still need to convert 

everything to the same type. It can be assumed that if we are using bit vectors for some reason, 

we are not doing so just once. Therefore, it is preferable to convert all variables involved in the 

operation to bit vectors. 

This approach ensures consistency and avoids potential issues when dealing with mixed types. 

If, for any reason, bit vectors are used, it is better to convert all variables to bit vectors in every 

operation. 

3.1.6.2 Remainder of division 

RTEHunter was developed for analyzing Java programs, but the program itself is written in 

C++. This posed challenges during integration. If we can pre-calculate operations, for instance, 

when both sides of a given operation, such as division, involve numbers (not symbols), we 

calculate it on the C++ side, and the symbolic solver only receives the computed value. This 

alone wouldn't be problematic if the toolsets of the two programming languages were entirely 

identical. 

One frequently encountered difference between the two languages was the modulus operation. 

In Java, the operation 12.3f % 3.2f is allowed. However, in C++, the % operator is not defined 

for float and double types. It turned out that the modulus operation cannot be handled the same 

way if a double or float appears on either side of the operation. Fortunately, in the C++ 

implementation, the math.h header provides the fmod(a, b) function, which behaves similarly 

to % in Java, but implementation-wise, both cannot be handled identically. For this operation, 

three different cases are considered: for integers, where it works the same as in Java; for real 

numbers, where the mentioned difference between Java and C++ exists, and hence a separate 

function must be used on the C++ side depending on whether a real number is present in the 

operation; and the third case where a symbol is present on either side of the operation, which is 

handled as a separate case everywhere. 

3.1.7 Integration result 

The integration of the Z3 solver has been completed, but testing and patching are still ongoing. 

Testing is currently performed on 89 Java test classes, each with 3-4 (or more) false positive 

(FP) and true positive (TP) errors. The results are reviewed one by one. We carry out minor 

corrections if necessary. A manual review is essential, because, for example, thanks to the 

improvements in RTEHunter, we have found an incorrectly categorized true positive runtime 

error. Table 18 shows partial results of several ClassCastException and ArithmeticException 

related tests. The last column shows how many of the errors were found by the original 

RTEHunter before integration, and the second-to-last column shows the post-integration states. 

In the case of false positive errors, the lower the number of hits, the better the results. 
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Table 18: Improvements in the regression tests 

Test name Total number of bugs Improved 

RTEHunter 

Original 

RTEHunter 

ArithmeticExceptions1 FP 2 2 2 

TP 7 3 2 

ClassCastException01 FP 2 0 0 

TP 2 1 0 

ClassCastException02 FP 1 0 0 

TP 1 0 0 

ClassCastException03 FP 2 0 0 

TP 2 1 0 

ClassCastException04 FP 2 0 0 

TP 1 1 0 

ClassCastException05 FP 2 0 0 

TP 2 2 0 

ClassCastException06 FP 2 0 0 

TP 1 1 0 

ClassCastException07 FP 2 0 0 

TP 2 2 0 

ClassCastException08 FP 2 0 0 

TP 2 2 0 

 

We have highlighted in green the cells where full improvement has been achieved. The original 

RTEHunter did a very poor job of detecting ClassCastExceptions, but, in most cases, this has 

been completely fixed. We have highlighted in yellow those cells where there was no or only 

partial improvement. For example, in the ArithmeticExceptions1 test, we still find the two false 

positive errors. These are currently being corrected. 

3.1.7.1 Example 

In this section, we show the faulty test case as an example. In Figure 18, you can see that one 

of the Integer to String casts was labeled a false positive because the else execution branch was 

considered unavailable. However, the improved RTEHunter detected this false positive, so we 

took a closer look at what could be wrong. We found that for given initial values i, j, the if 

condition can never be true. We have fixed the condition as follows: (i-j % 2) == -1. 
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The investigation on this test case also provided feedback on our % operation implementation. 

 

 
Figure 18: Faulty test case 

3.2 AI-based vulnerability detection 

The application of LLMs for vulnerability detection in code has been an area of significant 

interest in recent literature. In "Technical Report: Evaluation of ChatGPT Model for 

Vulnerability Detection," the authors evaluated the performance of ChatGPT and GPT-3 for 

vulnerability detection tasks but found that the ChatGPT model performed no better than a 

dummy classifier for both binary and multi-label classification tasks [79]. These findings 

demonstrate the limitations of LLMs when it comes to vulnerability detection in real-world 

datasets. 

Moreover, "Large Language Models are Edge-Case Fuzzers: Testing Deep Learning Libraries 

via FuzzGPT" explored the potential of LLMs for fuzzing deep learning libraries by proposing 

FuzzGPT, a technique to prime LLMs to synthesize unusual programs for fuzzing [80]. The 

authors demonstrated that FuzzGPT could substantially outperform TitanFuzz, detecting 76 

bugs, with 49 already confirmed as previously unknown bugs, including 11 high-priority bugs 

or security vulnerabilities [80]. This work highlights the potential of LLMs to be effectively 

used for fuzzing when primed with the right techniques. 

In contrast, "Detecting software vulnerabilities using Language Models" presented a 

transformer-based vulnerability detection framework called VulDetect, which achieved an 

accuracy of up to 92.65% in identifying vulnerable software code, outperforming other state-

of-the-art vulnerability detection techniques [81]. Additionally, "Predicting Vulnerability in 

Large Codebases With Deep Code Representation" developed an AI-based system that uses 

deep representation of Abstract Syntax Trees (ASTs) to identify and alert potential bugs during 

the development process [82]. These studies showcase the potential of LLMs and other deep 

learning techniques to detect and predict vulnerabilities in software code. 

One significant advancement is the application of LLMs for formal software verification, as 

described in a paper [83] that presents a method using LLMs trained on both natural language 

and code. These models are capable of generating and repairing entire proofs, marking a 

departure from traditional step-by-step or search-based verification methods. This approach 

allows LLMs to analyze codebases and identify logical errors, potentially leading to the 

discovery of vulnerabilities, and can be a valuable addition to current vulnerability detection 

practices in software development due to their learning capacity and compatibility with existing 

tools. 
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Another study [84] highlights the capability of OpenAI's GPT-4 in detecting software 

vulnerabilities, comparing its performance with traditional static code analyzers like Snyk and 

Fortify. The analysis, covering a range of repositories and programming languages, showed that 

GPT-4 identified about four times as many vulnerabilities as its counterparts and provided 

viable fixes with a low rate of false positives. This demonstrates the potential of LLMs not only 

in detecting but also in repairing software vulnerabilities, indicating a significant advancement 

in automated software security. 

The paper [85] introduces VulBench, a benchmark combining data from CTF challenges and 

real-world applications to evaluate the effectiveness of Large Language Models (LLMs) in 

software vulnerability detection. The study finds that LLMs, particularly GPT-4, outperform 

traditional deep learning models and static analyzers in simpler scenarios like CTF datasets. 

However, their performance diminishes in more complex real-world datasets, highlighting a 

limitation in their current ability to analyze intricate software systems. The paper suggests 

future research should focus on enhancing LLMs' capabilities in processing complex projects 

and integrating them with other detection techniques, such as fuzzing or static analysis, to 

maximize their effectiveness in vulnerability detection. 

3.3 AI4VULN System Requirements Analysis 

This section will explain how the relevant system requirements identified in D2.1 will be 

covered by AI4VULN. 

Table 19: System requirements coverage by initial version of AI4VULN component 

Req. 

ID 

Req. name Req. 

description 

Priority Coverage How addressed 

SR-

011 

Vulnerability 

detection 

The AI4CYBER 

framework shall 

be able to 

identify 

vulnerabilities 

present in the 

source code via 

the AI4VULN 

component.  

M Partially 

covered 

AI4VULN will be tested 

on its regression 

testcases, open-source 

software systems 

containing known 

vulnerabilities and 

vulnerability databases. 

After that, we will apply 

AI4VULN on the target 

source code to detect the 

vulnerabilities. The result 

will be used by AI4FIX. 

The requirements will be validated in WP7. A training validation plan is available in Section 

3.7. 

3.4 AI4VULN Specification 

AI4VULN is a command line static analyzer tool that is able to detect vulnerabilities in the 

source code. Its output is the list of the detected vulnerabilities that is used by AI4FIX, but the 

users can also use it to correct to validate or to correct the bugs. 

In the following a detailed specification of the AI4VULN component according to C4 model 

(https://c4model.com/) is provided. 

https://c4model.com/
https://c4model.com/
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3.4.1 System context 

At system level AI4FIX uses the results of AI4VULN to correct security vulnerabilities and 

developers or security engineers also use it to check, correct or validate the security relevant 

bugs. 

Figure 19 shows the system context diagram of AI4VULN. The input of AI4VULN is the 

repository of the Java system to be analyzed. The developer who initiates the vulnerability 

searching process supplies AI4VULN with the file paths. The AI4VULN software system then 

processes the source code with static analysis. As a result, the developer receives the list of 

possible vulnerabilities, which can also be forwarded to the AI4FIX system for automatic error 

correction. 

 

 
Figure 19: System context of AI4VULN 

3.4.2 Container model 

Figure 20 shows the AI4VULN container diagram. AI4VULN can be divided into four units. 

First, the source code is analyzed by a language analyzer written in Java. The output of this 

analysis is the Abstract Semantic Graph (ASG) which means that the input program is translated 

into a graph representation. Using the ASG, the Control Flow Builder unit generates the Control 

Flow Graph (CFG). The input of the Symbolic Execution Engine is the ASG supplemented 

with the CFG. They will be used to simulate the execution of “all” possible execution paths of 

the program. A symbolic execution tree is created from these execution paths. By traversing 

the symbolic execution tree, VulnerabilityHunter identifies potential vulnerabilities. 
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Figure 20: Container model of AI4VULN 

3.4.3 Component model 

Figure 21 depicts the component model of the AI4VULN software system. Although 

AI4VULN consists of four containers, only the Symbolic execution Engine can be further 

decomposed, the others components are “simple”.  

The Symbolic engine uses the CFG and the ASG to generate a tree of possible execution paths. 

This generation process is supported by two components: the constraint solver and the path 

selector. The constraint solver can eliminate unsatisfiable execution branches. Since running 

the constraint solver itself can be very resource-demanding, we introduce heuristics to speed up 

its operation, hence the name heuristic constraint solver. 

The AI Supported path selector is responsible for prioritizing the examination of execution 

branches on which we are more likely to find vulnerabilities. This is important because the 

generation of possible execution branches is extremely resource intensive. If we limit the 

execution time and the usable memory (which we often have to do), important errors may 

remain undiscovered in the absence of proper prioritization. We train the AI on a database that 

contains execution branches involving runtime vulnerabilities. 
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Figure 21: Component model of AI4VULN 

3.4.4 Prospector Dataset 

The paper from Sabetta et al. [86] focuses on the challenge of tracing vulnerabilities in open-

source software projects and introduces a tool named Prospector, designed, and developed in 

the AssureMOSS [87] project to assist in this task. The core of the paper revolves around the 

development and evaluation of Prospector, a tool that utilizes heuristics inspired by human 

security experts to map vulnerability advisories to their corresponding fixes in source code. 

Summary of the Dataset Used in the Paper: 

- Dataset Overview: The paper discusses the utilization of a dataset comprising over 

1300 vulnerabilities across various open-source projects. This dataset is fundamental in 

testing and validating the efficacy of Prospector. 

- Purpose of the Dataset: It serves as a test bed for evaluating Prospector’s ability to 

rank candidate commits in such a way that the actual fix for a given vulnerability is 

among the top-10 candidates in over 90% of the cases. This ability is crucial for reducing 

the manual effort involved in identifying the correct commits that fix reported 

vulnerabilities. 

- Scope: It includes vulnerabilities from 723 open-source projects, developed in seven 

different programming languages. 

- Content: Each record in the dataset contains detailed information about a vulnerability, 

including references to the commits that fix the vulnerability. 

- Usage: The dataset was used in various configurations during the evaluation of 

Prospector, helping to determine the tool's effectiveness in different scenarios. 

- Benchmark for Tool Evaluation: The dataset provides a comprehensive and varied set 

of real-world cases to assess Prospector's performance. 

- Demonstration of Practical Application: By applying Prospector to this dataset, the 

researchers could demonstrate the tool's practical utility in an industrial context. 
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- Contribution to Research: The dataset represents a significant contribution to the field, 

offering a resource for further research and development of tools and methodologies in 

vulnerability management. 

In essence, the dataset plays a critical role in the paper by providing the means to evaluate the 

Prospector tool's effectiveness in automating the process of linking known vulnerabilities in 

open-source software to their respective fixes in the source code. The success of Prospector in 

handling this dataset highlights its potential to significantly reduce the manual effort required 

in vulnerability management and improve the efficiency of security practices in open-source 

software development. In the AI4CYBER project we also leverage on this dataset for training 

our generic model about finding and fixing security vulnerabilities. 

3.4.5 JiraMiner dataset 

To be able to determine whether a commit is security relevant, we needed labeled data from a 

trustworthy source instead of manual labeling. Therefore, we built a tool which gathers 

examples from open-source projects about issue types and code commits. 

The JiraMiner dataset is gathered from Apache projects available in JIRA issue tracking 

platform and their corresponding GitHub repositories for code. 

The dataset is available at Zenodo [88] 

3.4.5.1 JIRA to GitHub 

Each JIRA issue has a description field, which describes the problem and what to do in the 

issue. On the web frontend of JIRA an ‘Issue Links’ section can be seen which contains links 

to other issues, GitHub pull requests or commits. This field however is not available on the 

REST API (precisely, it is an empty list). In version 3 of the JIRA rest API, accessing remote 

links could be easier, but the Apache JIRA did not support that version of the API at the time 

of writing. 

Every issue has a large number of custom fields as well, most of them are not filled out. 

There are also comments and work log fields. The latter contains time tracking information 

about users and pull requests. Links to GitHub pull requests or individual commits can be in 

comments, work log entries and issue descriptions. The following problems arise: 

- there aren’t any GitHub links for every resolved issue, 

- some projects do not use GitHub, 

- a JIRA project can relate to multiple GitHub repositories, 

- the solution is done in a fork, not in the original repository, 

- pull requests are referenced in the work logs or comments, which do not solve the 

current issue, but relate in some way (e. g. the bug was accepted in that pull request or 

something was removed which was added in that pull request), 

- there could be links to renamed or deleted repositories, 

- individual GitHub files are referenced, 

- individual files (patch files or complete source files) are uploaded into JIRA and 

attached to the issue, 

- changelog for a larger version upgrade as a comment containing many irrelevant pull 

requests. 
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Some projects have a comment like “Issue resolved by pull request x”, which was not 

investigated. We gathered all the pull requests and commit links from the description, 

comments and work log fields and filtered out the duplicates. If a commit is referenced in a pull 

request and by itself as well, then it has to be filtered out. The problems mentioned above could 

make the dataset fill with irrelevant and misleading commits. 

Examples: 

- aardvark repository contains spam (https://issues.apache.org/jira/projects/AAR/issues) 

- 657 (+1 TST=test project) JIRA projects of which 209 does not contain links to any 

GitHub pull request or commit 

3.4.5.2 GitHub to JIRA 

All the referenced GitHub repos from the JIRA projects were collected, which resulted in more 

than 6000 collected repos. Only those were kept, where the owner of the repo is “apache”, 

which resulted in 1354 repos. For these repositories all the pull requests were collected, and 

issue keys from the titles were extracted. If a pull request has a corresponding JIRA issue, then 

the pull request’s title likely starts with the issue’s key, e.g., “ARROW-18299: 

[CI][GLib][macOS] Fix dependency install failures”, where “ARROW-18299” is the issue’s 

key. Not every title starts with the issue key, therefore the first instance of a string matching 

“[A-Z]+-[0-9]+“was extracted. (Not only the first instance should be collected.) Many pull 

request titles reference UTF-8, CVEs, RFCs, JDK-s, which are obviously not issue keys. 

Problems: 

- Some issues are so new that they were not present in the downloaded JIRA issues. 

- Some of these issue keys correspond to improvement proposals (e.g., SIP, RocketMQ 

Improvement Proposals, RIP) or enhancement proposals (Cassandra Enhancement 

Proposal, CEP), which are used for significant changes (not small fixes). 

- Some projects use GitHub Issues to track bugs, improvements, features and reference 

them in the same format. (e.g., BUG-6331 referring to #6331 GitHub Issue with bug 

label) 

- Often the project’s name in the issue key has a typo. E.g., BOOKKKEEPER instead of 

BOOKKEEPER. 

- Projects tracked with Bugzilla, have a key starting with BZ. 

- Apache AIRFLOW has many referenced JIRA issues, but the project has been deleted 

from Apache’s JIRA or it is restricted. 

- APEX has been renamed APEXCORE, meaning that the JIRA issue keys were also 

renamed, which makes the older pull requests harder to match with the corresponding 

issue. 

The mistyped issue keys are fixed by finding the closest match in the existing project, above a 

certain similarity threshold. In many cases, this is not enough, the issue keys have to be 

examined manually. 

Number of pull requests 801199 

Number of pull requests with a corresponding issue 314533 
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3.4.5.3 JSON format 

The JIRAMiner dataset, focusing on JIRA-supported Apache projects (found at Apache JIRA5), 

utilizes a comprehensive JSON structure to encapsulate the collected information. This JSON 

structure is designed to accurately reflect the various components of a JIRA issue. The structure 

includes the following elements: 

 

Project: (JIRA project6): 

• self: JIRA REST API resource link 

• id: JIRA id 

• key: JIRA key 

• url: project URL from JIRA if filled out 

• issue: list of JIRA issues 

Issue: (JIRA issue7): 

• self: JIRA REST API resource link 

• id: JIRA id 

• key: JIRA key 

• issuetype: type of issue (IssueType) 

• description: issue description 

• status: status (Status) 

• prlinks: list of referenced pull request links 

• commitlinks: list of referenced commit links 

• GitHublinks: list of references GitHub links (currently not in use) 

• commits: list of commits 

IssueType (JIRA issuetype8): 

• self: JIRA REST API resource link 

• name: issuetype name 

Status (JIRA status9): 

• self: JIRA REST API resource link 

• name: status name 

Commit (GitHub commit10): 

• sha: commit hash 

• message: commit message: 

• files: list of files associated with the commit 

• pullrequest: the number of the pull request from which the commit was accessed 

• path: path to the downloaded commit on disk 

File (GitHub file description in a commit): 

• sha: file hash 

• filename: name of the file 

• status: ("added", "removed", "modified", "renamed", "copied", "changed", 

"unchanged") 

• contents_url: GitHub REST API resource link to the file in the commit’s state 

• raw_url: GitHub raw resource link to the file in the commit’s state 

 

 

 

 
5 https://issues.apache.org/jira 
6 https://docs.atlassian.com/software/jira/docs/api/REST/7.6.1/#api/2/project 
7 https://docs.atlassian.com/software/jira/docs/api/REST/7.6.1/#api/2/issue 
8 https://docs.atlassian.com/software/jira/docs/api/REST/7.6.1/#api/2/issuetype 
9 https://docs.atlassian.com/software/jira/docs/api/REST/7.6.1/#api/2/status 
10 https://docs.GitHub.com/en/rest/commits/commits 

https://issues.apache.org/jira
https://docs.atlassian.com/software/jira/docs/api/REST/7.6.1/#api/2/project
https://docs.atlassian.com/software/jira/docs/api/REST/7.6.1/#api/2/issue
https://docs.atlassian.com/software/jira/docs/api/REST/7.6.1/#api/2/issuetype
https://docs.atlassian.com/software/jira/docs/api/REST/7.6.1/#api/2/status
https://docs.github.com/en/rest/commits/commits
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Project: 

• issues: [Issue] 

o issuetype: IssueType 

o status: Status 

o commits: [Commit] 

o files: [File]  

3.4.6 Identifying security relevance 

The commit classification activity which will be used for guiding symbolic execution to 

relevant code parts was initially done on the JiraMiner dataset. As a first attempt to build a 

proof-of-concept classifier, we have gathered numerous issues and filtered them based on 

keywords. 

Table 20: Keyword classes in JIRA 

Issue type Number of issues 

Bug 128152 

Improvement 100921 

Sub-task 38281 

New Feature 23168 

Task 20515 

Test 4295 

Dependency upgrade 1772 

Wish 1443 

Technical Debt 844 

Documentation 685 

Story 298 

Epic 288 

Dependency 66 

Other/Misc 135 
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Table 21: Number of issues, which have at least one associated java file 

Issue type Number of issues 

Bug 128064 

Improvement 100834 

New Feature 23181 

Test 4298 

Dependency upgrade 1772 

 

Security-relevant keywords: 

encryption, cve, security, secure, vuln, vulnerability, attack, defense, attacker, hardening 

 

Similar keywords found in the descriptions: 

secure, defense, hardening, cve, vulnearbility, security=, secures, defensive, attack, vulnerabilityid, attacks, 

vulneraility, secure, security, cves, attackers, vulnid, encryptions, encryption, -encryption, vuln, attacker, vulns, 

security/, harden 

 

Security-relevant pull-request/issue pairs: 8225 (out of which 8210 have associated java files) 

 

Classifier: 

- Calculating code metrics for the pull requests and saving them in a separate database/csv 

for further operations. (This way the whole codebase only has to be processed once.) 

- The commits for one pull request have to be merged into one, keeping only the last 

changes for each file. (The intermediate changes in commits have to be discarded, 

because the JIRA issues are associated with the pull requests, not the individual 

commits.) 

- A separate one-class classifier (e.g., decision trees, random forest, SVM, Naive Bayes) 

for each issue type (e.g., for deciding whether it is an "Improvement" or not), or a multi-

class classifier for the whole problem. 

- A separate model for classifying security-relevant pull requests based on the same data 

using oversampling techniques to combat the high class-imbalance. 

3.4.6.1 Metrics 

Three types of representations were calculated for each file downloaded by the Apache-JIRA 

miner: 

- class-level code metrics calculated using static analysis, 

- a 10-dimensional embedding created using a Word2Vec model trained on Java code, 

- a 100-dimensional embedding created using a Doc2Vec model trained on Java code. 
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The class-level metrics were calculated using the CK tool11, which was used in other software 

evolution related machine learning projects (e.g., change-proneness detection). 

The 35 metrics are the following: 

- CBO (Coupling between objects): Counts the number of dependencies a class has. The 

tools check for any type used in the entire class (field declaration, method return types, 

variable declarations, etc.). It ignores dependencies to Java itself (e.g., java.lang.String). 

- CBO Modified (Coupling between objects): Counts the number of dependencies a class 

has. It is very similar to the CKTool's original CBO. However, this metric considers a 

dependency from a class as being both the references the type makes to others and the 

references that it receives from other types. 

- FAN-IN: Counts the number of input dependencies a class has, i.e., the number of 

classes that reference a particular class. For instance, given a class X, the fan-in of X 

would be the number of classes that call X by referencing it as an attribute, accessing 

some of its attributes, invoking some of its methods, etc. 

- FAN-OUT: Counts the number of output dependencies a class has, i.e., the number of 

other classes referenced by a particular class. In other words, given a class X, the fan-

out of X is the number of classes called by X via attributes reference, method 

invocations, object instances, etc. 

- DIT (Depth Inheritance Tree): It counts the number of "fathers" a class has. All classes 

have DIT at least 1 (everyone inherits java.lang.Object). In order to make it happen, 

classes must exist in the project (i.e., if a class depends upon X which relies in a 

jar/dependency file, and X depends upon other classes, DIT is counted as 2). 

- NOC (Number of Children): It counts the number of immediate subclasses that a 

particular class has. 

- Number of fields: Counts the number of fields. Specific numbers for total number of 

fields, static, public, private, protected, default, final, and synchronized fields. 

- Number of methods: Counts the number of methods. Specific numbers for total number 

of methods, static, public, abstract, private, protected, default, final, and synchronized 

methods. Constructor methods also count here. 

- Number of visible methods: Counts the number of visible methods. A method is visible 

if it is not private. 

- NOSI (Number of static invocations): Counts the number of invocations to static 

methods. It can only count the ones that can be resolved by the JDT. 

- RFC (Response for a Class): Counts the number of unique method invocations in a 

class. As invocations are resolved via static analysis, this implementation fails when a 

method has overloads with the same number of parameters, but different types. 

- WMC (Weight Method Class) or McCabe's complexity. It counts the number of branch 

instructions in a class. 

- LOC (Lines of code): It counts the lines of count, ignoring empty lines and comments 

(i.e., it is Source Lines of Code, or SLOC). The number of lines here might be a bit 

different from the original file, as we use JDT's internal representation of the source 

code to calculate it. 

 

 

 
11 https://GitHub.com/mauricioaniche/ck 

https://github.com/mauricioaniche/ck
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- LCOM (Lack of Cohesion of Methods): Calculates LCOM metric. This is the very first 

version of metric, which is not reliable. LCOM-HS can be better (hopefully, you will 

send us a pull request). 

- LCOM* (Lack of Cohesion of Methods): This metric is a modified version of the current 

version of LCOM implemented in CK Tool. LCOM* is a normalized metric that 

computes the lack of cohesion of class within a range of 0 to 1. Then, the closer to 1 the 

value of LCOM* in a class, the less the cohesion degree of this respective class. The 

closer to 0 the value of LCOM* in a class, the more the cohesion of this respective class. 

This implementation follows the third version of LCOM* defined in [89]. 

- TCC (Tight Class Cohesion): Measures the cohesion of a class with a value range from 

0 to 1. TCC measures the cohesion of a class via direct connections between visible 

methods, two methods or their invocation trees access the same class variable. 

- LCC (Loose Class Cohesion): Like TCC but it further includes the number of indirect 

connections between visible classes for the cohesion calculation. Thus, the constraint 

LCC >= TCC holds always. 

- Quantity of returns: The number of return instructions. 

- Quantity of loops: The number of loops (i.e., for, while do while, enhanced for). 

- Quantity of comparisons: The number of comparisons (i.e., == and !=). Note: != is only 

available in 0.4.2+. 

- Quantity of try/catches: The number of try/catches 

- Quantity of parenthesized expressions: The number of expressions inside parenthesis. 

- String literals: The number of string literals (e.g., "John Doe"). Repeated strings count 

as many times as they appear. 

- Quantity of Number: The number of numbers (i.e., int, long, double, float) literals. 

- Quantity of Math Operations: The number of math operations (times, divide, remainder, 

plus, minus, left shift, right shift). 

- Quantity of Variables: Number of declared variables. 

- Max nested blocks: The highest number of blocks nested together. 

- Quantity of Anonymous classes, inner classes, and lambda expressions: The name says 

it all. Note that whenever an anonymous class or an inner class is declared, it becomes 

an "entire new class", e.g., CK generates A.B and A. B$C, C being an inner class inside 

A.B. However, lambda expressions are not considered classes, and thus, are part of the 

class/method they are embedded into. A class or a method only has the number of inner 

classes that are declared at its level, e.g., an inner class that is declared inside a method 

M2, that is inside an anonymous class A, that is declared inside a method M, that finally 

is declared inside a class C, will not count in class C, but only in method M2 (first-level 

method it is embodied), and anonymous class A (first-level class it is embodied). 

- Number of unique words: Number of unique words in the source code. At method level, 

it only uses the method body as input. At class level, it uses the entire body of the class 

as metrics. The algorithm basically counts the number of words in a method/class, after 

removing Java keywords. Names are split based on camel case and underline (e.g., 

longName_likeThis becomes four words). See WordCounter class for details on the 

implementation. 

- Number of Log Statements: Number of log statements in the source code. The counting 

uses REGEX compatible with SLF4J and Log4J API calls. See 

NumberOfLogStatements.java and the test examples (NumberOfLogStatementsTest 

and fixtures/logs) for more info. 



D3.1: AI-driven self-testing and automatic error correction for robustness 82 

 

 

 

- Has Javadoc: Boolean indicating whether a method has javadoc. (Only at method-level 

for now) 

- modifiers: public/abstract/private/protected/native modifiers of classes/methods. Can be 

decoded using org.eclipse.jdt.core.dom.Modifier. 

- Usage of each variable: How often each variable was used inside each method. 

- Usage of each field: How often each local field was used inside each method, local field 

are fields within a class (subclasses are not included). Also, indirect local field usages 

are detected, indirect local field usages include all usages of fields within the local 

invocation tree of a class e.g., A invokes B and B uses field a, then a is indirectly used 

by A. 

- Method invocations: All directly invoked methods, variations are local invocations and 

indirect local invocations. 

There were some difficulties with the tool, mainly that often it skipped many files in the same 

source folder. So, it had to be run multiple times on smaller groups of source files. 

The Word2Vec model used for creating an embedding is the same, which was used in the Sorter 

(Patch prioritizer). A gensim12 implementation was utilized, which was trained on a large Java 

corpus13. The model creates a 10-dimensional embedding for the individual tokens, which are 

then averaged to obtain a vector representation for a given code snippet. 

The used Doc2Vec model is also the same, which was used in the Sorter. The gensim 

implementation was also trained in the same large Java corpus. Unlike the previous one, this 

model creates a document-level embedding (file-level in this case). 

3.4.6.2 Training results 

The metrics and embeddings were further aggregated to get a commit-level feature vector. Two 

types of simple aggregation were used, one is the averaging of the vectors, and the other is the 

summation of the vectors. 

PyCaret, a low-code machine learning library, was used, which trains many different classifiers 

(KNN, Logistic regression, SVM, ridge classifier, random forest, ada boost, linear discriminant 

analysis, extra trees, gradient boosting, light gradient boosting, decision tree, naïve bayes, 

quadratic discriminant analysis) on the same dataset. 

The results were similarly bad on all the datasets (class-level metrics, word2vec embedding, 

doc2vec embedding, all 3 at once), both commit aggregation techniques (averaging, 

summation) and classifiers. F1 score was between 0 and 0.2, recall was often below 10%, when 

recall was high, then accuracy was much worse. The task is hard because the dataset is very 

imbalanced, only a few thousand positive examples are there compared to the few hundred 

thousand negative examples. Even with imbalance fixing techniques (SMOTE) used by 

PyCaret, the results were similarly bad and practically unusable. 

Pycaret results using the metrics datasets with averaging as aggregation method and with fixing 

imbalance. 

 

 

 
12 https://radimrehurek.com/gensim/ 
13 https://groups.inf.ed.ac.uk/cup/javaGithub/ 

https://radimrehurek.com/gensim/
https://groups.inf.ed.ac.uk/cup/javaGithub/
https://groups.inf.ed.ac.uk/cup/javaGithub/
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Table 22: Metrics results 

Model Accuracy AUC Recall Precision F1 Kappa MCC 

Logistic Regression 0.9953 0.4851 0.0000 0.0000 0.0000 -0.0000 -0.0001 

K Neighbors Classifier 0.9953 0.5326 0.0032 0.2833 0.0063 0.0062 0.0291 

Ridge Classifier 0.9953 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Ada Boost Classifier 0.9953 0.5759 0.0000 0.0000 0.0000 0.0000 0.0000 

Dummy Classifier 0.9953 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 

Quadratic 

Discriminant Analysis 

0.9952 0.4996 0.0000 0.0000 0.0000 -0.0002 -0.0006 

Linear Discriminant 

Analysis 

0.9952 0.5746 0.0000 0.0000 0.0000 -0.0002 -0.0005 

Random Forest 

Classifier 

0.9951 0.5618 0.0128 0.1921 0.0236 0.0230 0.0471 

Light Gradient 

Boosting Machine 

0.9951 0.5913 0.0040 0.0613 0.0075 0.0069 0.0145 

Extra Trees Classifier 0.9950 0.5779 0.0287 0.2465 0.0512 0.0503 0.0823 

Gradient Boosting 

Classifier 

0.9949 0.5976 0.0024 0.0196 0.0043 0.0034 0.0054 

SVM - Linear Kernel 0.9948 0.0000 0.0008 0.0009 0.0009 0.0002 -0.0000 

Decision Tree 

Classifier 

0.9916 0.5285 0.0335 0.0393 0.0360 0.0318 0.0320 

Naive Bayes 0.1339 0.5281 0.9003 0.0048 0.0096 0.0003 0.0062 

 

The results show that the approach which uses metrics derived from the source code and commit 

metadata does not meet the expected level of accuracy. Therefore, as future research we will 

include the source code (the amount of code required for accurate classification will be subject 

to research) in the classification data directly using LLM. 

3.4.6.3 LLM-based identification of security-relevance (proof of concept) 

Security relevance evaluation of code snippets with GPT-3.5 turbo and GPT-4 turbo was 

conducted with a prompt on the Vul4J dataset [90] 

GPT was prompted 10 times on each entry of the dataset, once before commit (vulnerable) and 

once after the commit (corrected) and returned whether it found security relevant or not. It was 

prompted 10 times to try to minimize the randomness of GPT. Both GPTs evaluated 

approximately the same amount for the before and after commit code snippets without any 
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significant difference, so the code snippet does not provide good enough context to GPT to 

evaluate it from a prompt. 

 
Figure 22: Security-relevance classification 

 

We continued with fine-tuning GPT4 with OpenAI playground on MSR-20 dataset [91]: 

200 C++ code snippets were provided, 50% insecure, 50% secure to create a fine-tuned GPT 

for binary classification, where 0 was secure and 1 was insecure. After evaluating it on 250 

other code snippets it achieved 52% accuracy with 46.7% precision and 37.7% recall. 

3.4.7 LLM-based Vulnerability detection (proof of concept) 

To test the vulnerability detection capabilities of Large Language Models (LLMs), we forked 

the AutoGPT14 project, which aims to develop an autonomous AI capable of performing various 

tasks without human intervention. 

Like our approach in AI-based test generation (Section 2.1.4), we utilized the OWASP Java 

benchmark for this purpose. This benchmark comprises both vulnerable and non-vulnerable 

code snippets. Unlike in test generation, the AI's task here is to identify vulnerabilities without 

the necessity to exploit them. Given the benchmark's characteristics, detecting vulnerabilities 

posed a greater challenge for the AI compared to generating tests. 

We used the following prompt: 

You are VulnGPT, EvaluatorAI, whose task is to find vulnerabilities in a given source file. I will provide you with code 

snippets, and you will analyze them to identify potential security flaws or weaknesses. Your decisions must always be made 

independently without seeking user assistance. Play to your strengths as an LLM and pursue simple strategies with no legal 

complications.  

GOALS:  

1. Analyze the provided source code snippet for security vulnerabilities  

2. Generate a list of findings and possible fixes  

3. Upon request review your previous findings and refine your result according to that  

 

Constraints:  

1. ~4000 word limit for short term memory. Your short-term memory is short, so immediately save important information to 

files.  

2. If you are unsure how you previously did something or want to recall past events, thinking about similar events will help 

you remember.  

 

 

 
14 https://GitHub.com/Significant-Gravitas/AutoGPT 
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3. No user assistance  

4. Exclusively use the commands listed in double quotes e.g., "command name"  

 

Performance Evaluation:  

1. Continuously review and analyze your actions to ensure you are performing to the best of your abilities.  

2. Constructively self-criticize your big-picture behavior constantly.  

3. Reflect on past decisions and strategies to refine your approach.  

4. Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps.  

 

Result types:  

VULNERABILITY: Exploitable vulnerability, such as buffer overflow.  

POTENTIAL_VULN: Potential vulnerability without evidence that it can be exploited.  

IMPROVEMENT: Robustness or quality improvement, such as error handling and error messages.  

 

You should only respond in JSON format as described below Response Format:  

{ 

"thoughts": { 

"text": "thought", 

"reasoning": "reasoning", 

"plan": "short, bulleted list that conveys long-term plan", 

"criticism": "constructive self-criticism" 

}, 

"results": [ 

{ 

"short description": "name", 

"explanation": "explanation", 

"type": "vulnerability type" 

} 

] 

} 

 

Ensure the response can be parsed by Python json.loads 

Analyze the next source snippet, and respond using the format specified above: 

<code snippet> 

In the benchmark, each test initially appeared vulnerable, primarily because the exploitability 

hinged on the 'doSomething' function. Consequently, when processed as a one-shot request, 

Large Language Models (LLMs) identified every test case as either vulnerable or potentially 

so. This trend became more pronounced due to the placement of the 'doSomething' function 

after sections of code that appeared vulnerable. By the time the LLM encountered the 

'doSomething' function, it had already assessed the preceding code for vulnerabilities. 

To address this behavior, we employed a method of self-reflection. Our aim was to avoid 

revealing more information about the vulnerabilities than what was present in the raw source 

code. Therefore, we formulated simple reflection questions for each detected issue, tailoring 

these questions according to the type of problem reported. Depending on the reported problem 

type we used the following questions: 
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Are you sure about the vulnerability referenced as <id>? 

<id> is really a vulnerability? Is it possible to exploit? 

Are you sure about the potential vulnerability referenced as <id>? 

Can the improvement referenced as <id> eliminate any potential vulnerability? 

Using the self-reflection technique, the LLMs have a chance to successfully analyze the 

doSomething function as part of the whole task and provide a proper decision. However, in 

some cases, the analysis was proper, but the final decision was incorrect. For example, some of 

the tests passed the user input to the evaluation using the environment variables, which were 

executed using the following insecureCmd.sh script: 

#!/bin/sh 

 

echo Your original string: 

eval $FOO 

echo Your string reversed value is:  

echo $FOO | rev 

If we passed the content of this script also along with the Java code snippet, the LLM provided 

the following analysis after the self-reflection question: 

Upon further review, the 'Command Injection' vulnerability is not exploitable in this case. The user input is passed as an 

environment variable (FOO) to the insecureCmd.sh script, which then uses 'eval' to execute the value of FOO. However, since 

the value of FOO is passed as an environment variable and not directly concatenated into the command string, it is not possible 

for an attacker to inject arbitrary commands. 

The analysis accurately identified that the user parameter could be passed to the command 

execution code, yet the assessment of exploitability was flawed. 

Due to these identified issues, in the command injection test category the LLMs yielded the 

following detection statistics: 

Table 23: Command injection test results 

Command 

injection 

Models 

ChatGPT 3.5 ChatGPT 4 

Prompting One-shot Self-reflection One-shot Self-reflection 

TP 27 23 92 62 

TN 68 79 9 66 

FP 35 24 94 37 

FN 65 69 0 30 

TPR 0.29 0.25 1 0.67 

FPR 0.34 0.23 0.91 0.35 

Precision 0.49 0.52 0.52 0.66 

F1 0.36 0.34 0.68 0.66 
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Figure 23: Scorecard for command injection results 

As demonstrated in Figure 23, GPT-4, enhanced with self-reflection capabilities, outperformed 

random guessing by a significant margin. This outcome underscores the promising potential of 

using Large Language Models (LLMs) in detecting vulnerabilities, especially in comparison to 

other available tools. 

In addition to addressing command injection issues, we also tested the vulnerability detection 

capabilities of Large Language Models (LLMs) with weak random test cases. Here too, we 

encountered detection challenges. Although the LLMs identified the issue of insecure 

randomness from the descriptions, they did not categorize it as a vulnerability. Despite attempts 

to enhance detection by providing more detailed explanations about the need for secure 

randomness, there was no improvement in detection accuracy. 

A typical instance where insecure randomness was correctly identified but not deemed 

significant involved cookie generation. In this scenario, secure randomness is crucial for cookie 

generation. However, since randomness was part of a test application where the cookies weren't 

used in any real operations, the issue was overlooked. This highlights a gap in the LLMs' ability 

to contextualize the importance of vulnerabilities based on their application environment. 

Upon further review, the use of Math.random() in this specific context is for generating a 'rememberMeKey' value, which is 

not used for any security-critical operations such as encryption or authentication. Therefore, the use of Math.random() in this 

case does not pose a significant security risk, and the previous assessment of this as a vulnerability is not accurate. 

Owing to these challenges, one-shot prompting produced superior results for both GPT-3.5 and 

GPT-4. However, the improvement was notably more significant with GPT-4, as this model 

demonstrated a markedly better understanding that the evaluated test case did not pose any real 

threat. As evident in the table below, the one-shot results from GPT-4 were highly accurate. 
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Table 24: Testing one-shot and self-reflection techniques 

Weak random 
Models 

ChatGPT 3.5 ChatGPT 4 

Prompting One-shot Self-reflection One-shot Self-reflection 

TP 90 78 201 30 

TN 201 188 156 156 

FP 18 31 4 4 

FN 72 84 20 191 

TPR 0.55 0.48 0.91 0.13 

FPR 0.08 0.14 0.03 0.03 

Precision 0.76 0.70 0.94 0.49 

F1 0.64 0.57 0.92 0.21 

 

Figure 24: Scorecard for weak randomness results 

During our tests we tested the vulnerability detection capabilities for 381 test cases of using 

weak random. The presented results show that LLMs can perform vulnerability detection for 

the tested issue types with up to 0,92 F1 score. Individual test results may vary; however, the 

high amount of test cases imply that the expected performance is close to the observed 

performance. 

3.5 AI4VULN Communication Interfaces  

This subsection will describe the communication interfaces of AI4VULN. AI4VULN detects 

the vulnerability in the source code and the output contains position of the vulnerability and the 

trace information which leads the vulnerability. AI4VULN supports XML and JSON format. 

An example for XML output is the following: 

<attribute type = "composite" name = "RH_CCE" context = "warning"> 

  <attribute type = "string" name = "Path" context = "" value = "test1.java"/> 

  <attribute type = "int" name = "Line" context = "" value = "18"/> 
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  <attribute type = "int" name = "Column" context = "" value = "22"/> 

  <attribute type = "int" name = "EndLine" context = "" value = "18"/> 

  <attribute type = "int" name = "EndColumn" context = "" value = "40"/> 

  <attribute type = "string" name = "WarningText" context = "" value = "Cannot 

cast &apos;next&apos; to type &apos;Integer&apos;&#x0A;&#x0A;"/> 

  <attribute type = "composite" name = "ExtraInfo" context = "trace"> 

    <attribute type = "composite" name = "SourceLink" context = ""> 

      <attribute type = "string" name = "Path" context = "" value = "test1.java"/> 

      <attribute type = "int" name = "Line" context = "" value = "12"/> 

      <attribute type = "int" name = "Column" context = "" value = "2"/> 

      <attribute type = "int" name = "EndLine" context = "" value = "12"/> 

      <attribute type = "int" name = "EndColumn" context = "" value = "23"/> 

      <attribute type = "int" name = "CallStackDepth" context = "" value = "0"/> 

    </attribute> 

    <attribute type = "composite" name = "SourceLink" context = ""> 

      <attribute type = "string" name = "Path" context = "" value = "test1.java"/> 

      <attribute type = "int" name = "Line" context = "" value = "15"/> 

      <attribute type = "int" name = "Column" context = "" value = "9"/> 

      <attribute type = "int" name = "EndLine" context = "" value = "15"/> 

      <attribute type = "int" name = "EndColumn" context = "" value = "12"/> 

      <attribute type = "int" name = "CallStackDepth" context = "" value = "0"/> 

    </attribute> 

    <attribute type = "composite" name = "SourceLink" context = ""> 

      <attribute type = "string" name = "Path" context = "" value = "test1.java"/> 

      <attribute type = "int" name = "Line" context = "" value = "16"/> 

      <attribute type = "int" name = "Column" context = "" value = "23"/> 

      <attribute type = "int" name = "EndLine" context = "" value = "16"/> 

      <attribute type = "int" name = "EndColumn" context = "" value = "31"/> 

      <attribute type = "int" name = "CallStackDepth" context = "" value = "0"/> 

    </attribute> 

    <attribute type = "composite" name = "SourceLink" context = ""> 

      <attribute type = "string" name = "Path" context = "" value = "test1.java"/> 

      <attribute type = "int" name = "Line" context = "" value = "16"/> 

      <attribute type = "int" name = "Column" context = "" value = "4"/> 

      <attribute type = "int" name = "EndLine" context = "" value = "16"/> 

      <attribute type = "int" name = "EndColumn" context = "" value = "34"/> 

      <attribute type = "int" name = "CallStackDepth" context = "" value = "0"/> 

    </attribute> 

    <attribute type = "composite" name = "SourceLink" context = ""> 

      <attribute type = "string" name = "Path" context = "" value = "test1.java"/> 

      <attribute type = "int" name = "Line" context = "" value = "17"/> 

      <attribute type = "int" name = "Column" context = "" value = "14"/> 

      <attribute type = "int" name = "EndLine" context = "" value = "17"/> 

      <attribute type = "int" name = "EndColumn" context = "" value = "21"/> 

      <attribute type = "int" name = "CallStackDepth" context = "" value = "0"/> 

    </attribute> 

    <attribute type = "composite" name = "SourceLink" context = ""> 

      <attribute type = "string" name = "Path" context = "" value = "test1.java"/> 

      <attribute type = "int" name = "Line" context = "" value = "17"/> 
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      <attribute type = "int" name = "Column" context = "" value = "10"/> 

      <attribute type = "int" name = "EndLine" context = "" value = "17"/> 

      <attribute type = "int" name = "EndColumn" context = "" value = "24"/> 

      <attribute type = "int" name = "CallStackDepth" context = "" value = "0"/> 

    </attribute> 

    <attribute type = "composite" name = "SourceLink" context = ""> 

      <attribute type = "string" name = "Path" context = "" value = "test1.java"/> 

      <attribute type = "int" name = "Line" context = "" value = "18"/> 

      <attribute type = "int" name = "Column" context = "" value = "34"/> 

      <attribute type = "int" name = "EndLine" context = "" value = "18"/> 

      <attribute type = "int" name = "EndColumn" context = "" value = "38"/> 

      <attribute type = "int" name = "CallStackDepth" context = "" value = "0"/> 

    </attribute> 

    <attribute type = "composite" name = "SourceLink" context = ""> 

      <attribute type = "string" name = "Path" context = "" value = "test1.java"/> 

      <attribute type = "int" name = "Line" context = "" value = "18"/> 

      <attribute type = "int" name = "Column" context = "" value = "31"/> 

      <attribute type = "int" name = "EndLine" context = "" value = "18"/> 

      <attribute type = "int" name = "EndColumn" context = "" value = "40"/> 

      <attribute type = "int" name = "CallStackDepth" context = "" value = "0"/> 

    </attribute> 

  </attribute> 

</attribute> 

3.6  AI4VULN Installation and User Guide 

VULHunter is a module of SourceMeter and cannot be executed without it. The detailed user 

can be found in the SourceMeter package, which can be downloaded from 

https://sourcemeter.com/ 

3.7 AI4VULN Unit Testing 

This subsection provides the unit tests of AI4VULN. 

Table 25: System test case AI4VULN_001 

Test Case 

ID 

AI4VULN_001 Component AI4VULN 

Req ID SR-011 Priority High 

Description We measure TP, FP, TN, FN scores of AI4VULN on its regression test  

Tested by FEA 

Pre-

condition(s) 

Regression tests for AI4VULN. 

Test steps 

1 We run AI4VULN on its regression tests 

2 We evaluate the results 

https://sourcemeter.com/
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3 We measure the TP, FP, TN, FN scores 

Input data Regression test 

Result The improved version of AI4VULN on its regression test. The improvements 

can be measured.  

Test Case 

Result 

Achieved /Not achieved 

Table 26: System test case AI4VULN_002 

Test Case 

ID 

AI4VULN_002 Component AI4VULN 

Req ID SR-011 Priority High 

Description We measure the performance of AI4VULN on a large set of large open-

source software. 

Tested by FEA 

Pre-

condition(s) 

Collection of open-source software 

Test steps 

1 We run AI4VULN on a set of large open-source software 

2 We evaluate the results (TP and FP) 

3 We compare the execution time and used memory with the earlier version 

Input data Collection of large open-source systems and the previous execution results 

Result We can see the change in the performance 

Test Case 

Result 

Achieved /Not achieved 

3.7.1 Validation on open-source projects 

The evaluation of RTEHunter on open-source systems will be performed after the small-scale 

tests are completed. As a starting point, a database of 209 Java systems is already available. 

These systems are from different domains and their size range from a thousand to 2.5 million 

lines of code. The histogram of the LOC is presented in Figure 25. 
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Figure 25: Lines of Code histogram of the examined Java projects 

 

Table 27 shows the minimum, maximum, and the average lines of code and the number of 

classes metric of the systems. 

Table 27: The Lines of Code and Number of Classes metrics of the examined Java projects 

 Lines of Code Number of Classes 

Minimum 993 17 

Maximum 2,594,569 16,934 

Average 140,653 1,090 

 

3.7.1.1 Measuring the improvements 

To verify the improvement of our approaches, we will execute both the original and the 

improved versions of RTEHunter on the Java systems. During the evaluation of the results, we 

will monitor changes in the detected runtime errors, i.e., the shifting of true positive and false 

positive alerts. We will also measure performance changes, such as changes in memory 

consumption and runtime. 
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4 Conclusions 

This section concludes this deliverable summarizing the main results and future works. 

The deliverable has presented the specification of the initial version of the two components in 

AI4CYBER Framework dedicated to AI-driven fixing of code and AI-driven vulnerability 

testing, AI4FIX and AI4VULN, respectively. 

AI4FIX is built using a general software evolution model containing robustness improvements 

and a customized model used for improved test and fix generation capabilities. The initial 

results show that LLM-based solutions can carry out these tasks.  

The initial version of AI4VULN is already able to detect bugs in the code but it is not able to 

follow the execution paths properly. In this project we improved the symbolic execution engine 

of the baseline solution so that it can find more bugs and the false positive rate is lower. 

The tools are interconnected as the potential vulnerabilities detected by AI4VULN can be 

corrected by AI4FIX, therefore, the tools are implemented in a common framework of AI-

driven code testing.  

For the future version of the prototypes, based on the presented research and proof-of-concept 

results, we will implement locally deployable LLM-based version of AI4FIX and AI4VULN 

in a common framework. The context size required for improved results will be further studied.  

For AI4VULN, after performing the small-scale java tests, we will also it on the large-scale, 

open-source Java projects. The focus will be not only on the accuracy of the error detection, but 

on the performance: the amount of memory consumed, and the time required for analysis. Once 

we get an idea of the current state of the system, we will delve into the development of constraint 

solver heuristics and AI-supported route selection. 

The final version of the tools along with the validation results will be presented in D3.3. The 

validation of both components will be conducted in the context of selected Use case 2 banking 

applications, testing and fixing their code. 
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