

AI4DECEIVE Honeynet deployment platform

The main goal of AI4DECEIVE is the dynamic and intelligent deployment of honeypots throughout a network infrastructure, commonly referred to as honeynet orchestration.

Honeynet deployment strategy decision complexity is automatically handled by the AI4DECEIVE tool while the security operator workload is reduced.

Al4DECEIVE's Intelligent Deceive Decision Engine (IDDE) module applies game theory algorithms to determine the optimal type and number of honeypot instances needed to mitigate detected threats against a system under protection.

The game theory-based models enable modelling attacker-defender interactions, planning deception strategies, and conducting cost-benefit analyses. The solution works together with the Montimage Monitoring Tool (MMT) which enables real-time log processing, threat detection, and visualization to support the computation of the best dynamic deception strategies. MMT has been enhanced to extract additional parameters from network activity, including the specific service being exploited at each step of an attack. The attack information from the MMT is forwarded to the IDDE, allowing it to make smarter informed decisions by mapping attack behaviours to the most appropriate honeypot types.

The Honeypot Manager component, accompanied by the Honeypots Catalogue, covers the deployment needs of each use case scenario, both in type and number of honeypot instances required to lure the attackers, and offering support to hybrid (local and cloud) deployments, as needed.

YouTube Video Link

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALL MANCE

Erkuden Rios (Erkuden.rios@tecnalia.com) Fundación Tecnalia Research & Innovation.

www.tecnalia.com

https://es.linkedin.com/company/tecnalia-researchinnovation

https://x.com/tecnalia

E. Iturbe, E. Rios, A. Rego, and N. Toledo, "Artificial Intelligence for next generation cybersecurity: The AI4CYBER framework", in Proceedings of the 18th International Conference on Availability, Reliability and Security, 2023, pp. 1–8.